Last modified by Artur on 2025/09/10 11:19

From version 1.12
edited by Helena
on 2025/06/16 13:10
Change comment: There is no comment for this version
To version 1.14
edited by Helena
on 2025/06/16 13:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -463,13 +463,10 @@
463 463  Some examples follow, for some specific values of INDICATOR and COUNTRY:
464 464  
465 465  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
466 -
467 467  … … …
468 468  
469 469  ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
470 -
471 471  ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
472 -
473 473  … … …
474 474  
475 475  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
... ... @@ -476,13 +476,9 @@
476 476  
477 477  VTL dataset   INDICATOR value COUNTRY value
478 478  
479 -
480 480  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
481 -
482 482  ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
483 -
484 484  ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
485 -
486 486  ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
487 487  
488 488  … … …
... ... @@ -490,25 +490,15 @@
490 490  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
491 491  
492 492  DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
493 -
494 494  DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
495 -
496 496  DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
497 -
498 498  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
499 -
500 500  DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
501 -
502 502  DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
503 -
504 504  DF2bis_GDPPERCAPITA_CANADA’,
505 -
506 506  … ,
507 -
508 508  DF2bis_POPGROWTH_USA’,
509 -
510 510  DF2bis_POPGROWTH_CANADA’
511 -
512 512  …);
513 513  
514 514  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -517,9 +517,7 @@
517 517  
518 518  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
519 519  
520 -1.
521 -11.
522 -111. Mapping variables and value domains between VTL and SDMX
503 +=== 12.3.7 Mapping variables and value domains between VTL and SDMX ===
523 523  
524 524  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
525 525  
... ... @@ -528,7 +528,6 @@
528 528  |**Represented Variable**|**Concept** with a definite Representation
529 529  |**Value Domain**|(((
530 530  **Representation** (see the Structure
531 -
532 532  Pattern in the Base Package)
533 533  )))
534 534  |**Enumerated Value Domain / Code List**|**Codelist**
... ... @@ -535,7 +535,6 @@
535 535  |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
536 536  |**Described Value Domain**|(((
537 537  non-enumerated** Representation**
538 -
539 539  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
540 540  )))
541 541  |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
... ... @@ -559,9 +559,8 @@
559 559  
560 560  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
561 561  
562 -1.
563 -11. Mapping between SDMX and VTL Data Types
564 -111. VTL Data types
541 +== 12.4 Mapping between SDMX and VTL Data Types ==
542 +=== 12.4.1 VTL Data types ===
565 565  
566 566  According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors.
567 567  
... ... @@ -569,17 +569,15 @@
569 569  
570 570  [[image:1750067055028-964.png]]
571 571  
572 -==== Figure 22 – VTL Data Types ====
550 +**Figure 22 – VTL Data Types**
573 573  
574 574  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
575 575  
576 576  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
577 577  
578 -==== Figure 23 – VTL Basic Scalar Types ====
556 +**Figure 23 – VTL Basic Scalar Types**
579 579  
580 -1.
581 -11.
582 -111. VTL basic scalar types and SDMX data types
558 +=== 12.4.2 VTL basic scalar types and SDMX data types ===
583 583  
584 584  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
585 585  
... ... @@ -597,9 +597,7 @@
597 597  
598 598  The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact.
599 599  
600 -1.
601 -11.
602 -111. Mapping SDMX data types to VTL basic scalar types
576 +=== 12.4.3 Mapping SDMX data types to VTL basic scalar types ===
603 603  
604 604  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
605 605  
... ... @@ -606,7 +606,6 @@
606 606  |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
607 607  |(((
608 608  String
609 -
610 610  (string allowing any character)
611 611  )))|string
612 612  |(((
... ... @@ -616,7 +616,6 @@
616 616  )))|string
617 617  |(((
618 618  AlphaNumeric
619 -
620 620  (string which only allows A-z and 0-9)
621 621  )))|string
622 622  |(((
... ... @@ -626,89 +626,70 @@
626 626  )))|string
627 627  |(((
628 628  BigInteger
629 -
630 630  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
631 631  )))|integer
632 632  |(((
633 633  Integer
634 -
635 635  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
636 -
637 637  (inclusive))
638 638  )))|integer
639 639  |(((
640 640  Long
641 -
642 642  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
643 -
644 644  +9223372036854775807 (inclusive))
645 645  )))|integer
646 646  |(((
647 647  Short
648 -
649 649  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
650 650  )))|integer
651 651  |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
652 652  |(((
653 653  Float
654 -
655 655  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
656 656  )))|number
657 657  |(((
658 658  Double
659 -
660 660  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
661 661  )))|number
662 662  |(((
663 663  Boolean
664 -
665 665  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
666 -
667 667  binary-valued logic: {true, false})
668 668  )))|boolean
669 669  |(((
670 670  URI
671 -
672 672  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
673 673  )))|string
674 674  |(((
675 675  Count
676 -
677 677  (an integer following a sequential pattern, increasing by 1 for each occurrence)
678 678  )))|integer
679 679  |(((
680 680  InclusiveValueRange
681 -
682 682  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
683 683  )))|number
684 684  |(((
685 685  ExclusiveValueRange
686 -
687 687  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
688 688  )))|number
689 689  |(((
690 690  Incremental
691 -
692 692  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
693 693  )))|number
694 694  |(((
695 695  ObservationalTimePeriod
696 -
697 697  (superset of StandardTimePeriod and TimeRange)
698 698  )))|time
699 699  |(((
700 700  StandardTimePeriod
701 -
702 702  (superset of BasicTimePeriod and ReportingTimePeriod)
703 703  )))|time
704 704  |(((
705 705  BasicTimePeriod
706 -
707 707  (superset of GregorianTimePeriod and DateTime)
708 708  )))|date
709 709  |(((
710 710  GregorianTimePeriod
711 -
712 712  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
713 713  )))|date
714 714  |GregorianYear (YYYY)|date
... ... @@ -716,32 +716,26 @@
716 716  |GregorianDay (YYYY-MM-DD)|date
717 717  |(((
718 718  ReportingTimePeriod
719 -
720 720  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
721 721  )))|time_period
722 722  |(((
723 723  ReportingYear
724 -
725 725  (YYYY-A1 – 1 year period)
726 726  )))|time_period
727 727  |(((
728 728  ReportingSemester
729 -
730 730  (YYYY-Ss – 6 month period)
731 731  )))|time_period
732 732  |(((
733 733  ReportingTrimester
734 -
735 735  (YYYY-Tt – 4 month period)
736 736  )))|time_period
737 737  |(((
738 738  ReportingQuarter
739 -
740 740  (YYYY-Qq – 3 month period)
741 741  )))|time_period
742 742  |(((
743 743  ReportingMonth
744 -
745 745  (YYYY-Mmm – 1 month period)
746 746  )))|time_period
747 747  |ReportingWeek|time_period
... ... @@ -748,42 +748,34 @@
748 748  | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
749 749  |(((
750 750  ReportingDay
751 -
752 752  (YYYY-Dddd – 1 day period)
753 753  )))|time_period
754 754  |(((
755 755  DateTime
756 -
757 757  (YYYY-MM-DDThh:mm:ss)
758 758  )))|date
759 759  |(((
760 760  TimeRange
761 -
762 762  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
763 763  )))|time
764 764  |(((
765 765  Month
766 -
767 767  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
768 768  )))|string
769 769  |(((
770 770  MonthDay
771 -
772 772  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
773 773  )))|string
774 774  |(((
775 775  Day
776 -
777 777  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
778 778  )))|string
779 779  |(((
780 780  Time
781 -
782 782  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
783 783  )))|string
784 784  |(((
785 785  Duration
786 -
787 787  (corresponds to XML Schema xs:duration datatype)
788 788  )))|duration
789 789  |XHTML|Metadata type – not applicable
... ... @@ -791,27 +791,20 @@
791 791  |IdentifiableReference|Metadata type – not applicable
792 792  |DataSetReference|Metadata type – not applicable
793 793  
794 -додол
733 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
795 795  
796 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
797 -
798 798  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
799 799  
800 -1.
801 -11.
802 -111. Mapping VTL basic scalar types to SDMX data types
737 +=== 12.4.4 Mapping VTL basic scalar types to SDMX data types ===
803 803  
804 804  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
805 805  
806 806  |(((
807 807  VTL basic
808 -
809 809  scalar type
810 810  )))|(((
811 811  Default SDMX data type
812 -
813 813  (BasicComponentDataType
814 -
815 815  )
816 816  )))|Default output format
817 817  |String|String|Like XML (xs:string)
... ... @@ -821,17 +821,15 @@
821 821  |Time|StandardTimePeriod|<date>/<date> (as defined above)
822 822  |time_period|(((
823 823  ReportingTimePeriod
824 -
825 825  (StandardReportingPeriod)
826 826  )))|(((
827 827   YYYY-Pppp
828 -
829 829  (according to SDMX )
830 830  )))
831 831  |Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
832 832  |Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
833 833  
834 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
764 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
835 835  
836 836  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
837 837  
... ... @@ -889,17 +889,13 @@
889 889  
890 890  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
891 891  
892 -1.
893 -11.
894 -111. Null Values
822 +=== 12.4.3 Null Values ===
895 895  
896 896  In the conversions from SDMX to VTL it is assumed by default that a missing value in SDMX becomes a NULL in VTL. After the conversion, the NULLs can be manipulated through the proper VTL operators.
897 897  
898 898  On the other side, the VTL programs can produce in output NULL values for Measures and Attributes (Null values are not allowed in the Identifiers). In the conversion from VTL to SDMX, it is assumed that a NULL in VTL becomes a missing value in SDMX. In the conversion from VTL to SDMX, the default assumption can be overridden, separately for each VTL basic scalar type, by specifying which the value that represents the NULL in SDMX is. This can be specified in the attribute "nullValue" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). A CustomType belongs to a CustomTypeScheme, which can be referenced by one or more TransformationScheme (i.e. VTL programs). The overriding assumption is applied for all the SDMX Dataflows calculated in the TransformationScheme.
899 899  
900 -1.
901 -11.
902 -111. Format of the literals used in VTL Transformations
828 +=== 12.4.5 Format of the literals used in VTL Transformations ===
903 903  
904 904  The VTL programs can contain literals, i.e. specific values of certain data types written directly in the VTL definitions or expressions. The VTL does not prescribe a specific format for the literals and leave the specific VTL systems and the definers of VTL Transformations free of using their preferred formats.
905 905  
... ... @@ -913,7 +913,6 @@
913 913  
914 914  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
915 915  
916 -
917 917  ----
918 918  
919 919  {{putFootnotes/}}