Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,9 +2,10 @@ 2 2 {{toc/}} 3 3 {{/box}} 4 4 5 -== 12.1 Introduction == 5 +1. 6 +11. Introduction 6 6 7 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones {{footnote}}The Validation andTransformationLanguageisastandardlanguagedesignedandpublishedunder theSDMXinitiative. VTLisdescribedintheVTL UserandReferenceGuidesavailableon theSDMXwebsitehttps://sdmx.org.{{/footnote}}. The purpose of the VTL in the SDMX context is to enable the:8 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]](%%). The purpose of the VTL in the SDMX context is to enable the: 8 8 9 9 * definition of validation and transformation algorithms, in order to specify how to calculate new data from existing ones; 10 10 * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms); ... ... @@ -12,30 +12,33 @@ 12 12 13 13 It is important to note that the VTL has its own information model (IM), derived from the Generic Statistical Information Model (GSIM) and described in the VTL User Guide. The VTL IM is designed to be compatible with more standards, like SDMX, DDI (Data Documentation Initiative) and GSIM, and includes the model artefacts that can be manipulated (inputs and/or outputs of Transformations, e.g. "Data Set", "Data Structure") and the model artefacts that allow the definition of the transformation algorithms (e.g. "Transformation", "Transformation Scheme"). 14 14 15 -The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate {{footnote}}In thischapter,inorder todistinguishVTLandSDMX modelartefacts,theVTL ones arewrittenin theArialfont while theSDMX onesinCourierNew.{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).16 +The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%). Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 17 The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 18 18 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 -== 12.2 References to SDMX artefacts from VTL statements == 22 -=== 12.2.1 Introduction === 22 +1. 23 +11. References to SDMX artefacts from VTL statements 24 +111. Introduction 23 23 24 24 The VTL can manipulate SDMX artefacts (or objects) by referencing them through predefined conventional names (aliases). 25 25 26 26 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 27 27 28 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets {{footnote}}Seealsothesection"VTL-DL Rulesets"in theVTL Reference Manual.{{/footnote}}orUserDefinedOperators{{footnote}}TheVTLMappingsareusedalsofor User Defined Operators(UDO).Although UDOsareenvisagedto bedefined ongenericoperands,so that the specific artefactsto bemanipulated are passedas parametersattheirinvocation,itisalso possiblethat anUDOinvokesdirectlysome specific SDMX artefacts.These SDMX artefactshaveto bemappedto thecorrespondingaliasesusedinthedefinitionoftheUDO throughtheVtlMappingSchemeand VtlMappingclasses aswell.{{/footnote}}to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.30 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) or User Defined Operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 29 29 30 30 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 31 31 32 32 The references through the URN and the abbreviated URN are described in the following paragraphs. 33 33 34 -=== 12.2.2 References through the URN === 36 +1. 37 +11. 38 +111. References through the URN 35 35 36 36 This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose. 37 37 38 -The SDMX URN {{footnote}}ForacompletedescriptionofthestructureoftheURN seetheSDMX 2.1 Standards- Section5 - RegistrySpecifications,paragraph 6.2.2 ("UniversalResource Name(URN)").{{/footnote}}(%style="font-size:12px" %)(%%)is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:42 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis: 39 39 40 40 * SDMXprefix 41 41 * SDMX-IM-package-name ... ... @@ -43,7 +43,7 @@ 43 43 * agency-id 44 44 * maintainedobject-id 45 45 * maintainedobject-version 46 -* container-object-id {{footnote}}Thecontainer-object-idcan repeat andmaynotbepresent.{{/footnote}}50 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]] 47 47 * object-id 48 48 49 49 The generic structure of the URN is the following: ... ... @@ -60,7 +60,7 @@ 60 60 61 61 The agency-id is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is "ESTAT"). The agency-id can be composite (for example AgencyA.Dept1.Unit2). 62 62 63 -The maintainedobject-id is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable {{footnote}}i.e.,the artefactbelongstoamaintainableclass{{/footnote}}, coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:67 +The maintainedobject-id is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 64 64 65 65 * if the artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id); 66 66 * if the artefact is a Dimension, Measure, TimeDimension or DataAttribute, which are not maintainable and belong to the ... ... @@ -82,7 +82,7 @@ 82 82 83 83 * if the artefact is a Concept (the object-id is the name of the Concept) 84 84 85 -For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as {{footnote}}Sincethesereferencesto SDMX objectsincludenon-permitted charactersasper theVTL IDnotation,theyneedto be includedbetweensinglequotes, accordingtotheVTLrulesfor irregularnames.{{/footnote}}:89 +For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]](%%): 86 86 87 87 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <- 88 88 ... ... @@ -90,7 +90,9 @@ 90 90 91 91 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 92 92 93 -=== 12.2.3 Abbreviation of the URN === 97 +1. 98 +11. 99 +111. Abbreviation of the URN 94 94 95 95 The complete formulation of the URN described above is exhaustive but verbose, even for very simple statements. In order to reduce the verbosity through a simplified identifier and make the work of transformation definers easier, proper abbreviations of the URN are possible. Using this approach, the referenced artefacts remain intelligible in the VTL code by a human reader. 96 96 ... ... @@ -99,10 +99,14 @@ 99 99 * The SDMXprefix can be omitted for all the SDMX objects, because it is a prefixed string (urn:sdmx:org), always the same for SDMX objects. 100 100 * The SDMX-IM-package-name** **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 101 101 ** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute, o "conceptscheme" for the class Concept, o "codelist" for the class Codelist. 102 -* The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator {{footnote}}For thesyntaxoftheVTLoperatorssee theVTLReferenceManual{{/footnote}}, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}Incasetheinvokedartefactisa VTL component,which canbeinvokedonlywithinthe invocationof a VTL dataset(SDMX Dataflow),thespecific SDMX class-name(e.g. Dimension,TimeDimension,Measure or DataAttribute) canbededuced fromthedatastructureoftheSDMX Dataflow,whichthecomponentbelongsto.{{/footnote}}.103 -* If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency {{footnote}}Ifthe Agency iscomposite(forexampleAgencyA.Dept1.Unit2),theagencyis considereddifferentevenif onlypartof thecompositenameisdifferent(forexampleAgencyA.Dept1.Unit3is a differentAgency than thepreviousone). Moreovertheagency-id cannotbe omitted inpart (i.e.,if a TransformationSchemeowned by AgencyA.Dept1.Unit2 referencesanartefact comingfrom AgencyA.Dept1.Unit3,the specificationoftheagency-idbecomes mandatoryandmustbecomplete,without omittingthepossibly equalpartslikeAgencyA.Dept1){{/footnote}}. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements).108 +* The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%). 109 +* If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%). Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements). 104 104 * As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 105 -** if the referenced artefact is a Dimension, TimeDimension, Measure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions; 111 +** if the referenced artefact is a Dimension, TimeDimension, Measure, 112 + 113 +DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions; 114 + 115 +* 106 106 ** if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class, the maintained object is the conceptScheme-id and cannot be omitted; 107 107 ** if the referenced artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the codelist-id and obviously cannot be omitted. 108 108 * When the maintainedobject-id is omitted, the maintainedobject-version is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default. ... ... @@ -123,7 +123,7 @@ 123 123 124 124 DFR := DF1 + DF2 125 125 126 -The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is {{footnote}}Singlequotes areneededbecausethisreferenceisnotaVTL regularname.19 Singlequotes arenot neededin thiscasebecauseCL_FREQisaVTLregular name.{{/footnote}}:136 +The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%): 127 127 128 128 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)' 129 129 ... ... @@ -141,7 +141,7 @@ 141 141 142 142 SECTOR 143 143 144 -For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as {{footnote}}The resultDFR(1.0.0)isbe equal toDF1(1.0.0)save that thecomponentSECTORiscalledSEC{{/footnote}}:154 +For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%): 145 145 146 146 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC] 147 147 ... ... @@ -161,26 +161,31 @@ 161 161 162 162 The artefact (Component, Concept, Codelist …) which the Values are referred to can be deduced from the context in which the reference is made, taking also into account the VTL syntax. In the Transformation above, for example, the values 0 and 2500 are compared to the values of the measures of DF1(1.0.0). 163 163 164 -=== 12.2.4 User-defined alias === 174 +1. 175 +11. 176 +111. User-defined alias 165 165 166 166 The third possibility for referencing SDMX artefacts from VTL statements is to use user-defined aliases not related to the SDMX URN of the artefact. 167 167 168 168 This approach gives preference to the use of symbolic names for the SDMX artefacts. As a consequence, in the VTL code the referenced artefacts may become not directly intelligible by a human reader. In any case, the VTL aliases are associated to the SDMX URN through the VtlMappingScheme and VtlMapping classes. These classes provide for structured references to SDMX artefacts whatever kind of reference is used in VTL statements (URN, abbreviated URN or user-defined aliases). 169 169 170 -=== 12.2.5 References to SDMX artefacts from VTL Rulesets === 182 +1. 183 +11. 184 +111. References to SDMX artefacts from VTL Rulesets 171 171 172 172 The VTL Rulesets allow defining sets of reusable Rules that can be applied by some VTL operators, like the ones for validation and hierarchical roll-up. A "Rule" consists in a relationship between Values belonging to some Value Domains or taken by some Variables, for example: (i) when the Country is USA then the Currency is USD; (ii) the Benelux is composed by Belgium, Luxembourg, Netherlands. 173 173 174 174 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the Rules. 175 175 176 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation {{footnote}}Rulesetsofthiskind cannotbereusedwhen the referencedConcepthasadifferent representation.{{/footnote}}.190 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%). 177 177 178 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX. {{footnote}}See alsothesection"VTL-DLRulesets"in theVTLReferenceManual.{{/footnote}}192 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]] 179 179 180 180 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact, which the Values are referred (Codelist, Concept) to can be deduced from the Ruleset signature. 181 181 182 -== 12.3 Mapping between SDMX and VTL artefacts == 183 -=== 12.3.1. When the mapping occurs === 196 +1. 197 +11. Mapping between SDMX and VTL artefacts 198 +111. When the mapping occurs 184 184 185 185 The mapping methods between the VTL and SDMX object classes allow transforming a SDMX definition in a VTL one and vice-versa for the artefacts to be manipulated. It should be remembered that VTL programs (i.e. Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformations (nameable artefacts). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result: the input operands of the expression and the result can be SDMX artefacts. Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 186 186 ... ... @@ -188,7 +188,9 @@ 188 188 189 189 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the ‘usage’ and ‘attributeRelationship’ for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 190 190 191 -=== 12.3.2 General mapping of VTL and SDMX data structures === 206 +1. 207 +11. 208 +111. General mapping of VTL and SDMX data structures 192 192 193 193 This section makes reference to the VTL "Model for data and their structure"{{footnote}}See the VTL 2.0 User Manual{{/footnote}} and the correspondent SDMX "Data Structure Definition"{{footnote}}See the SDMX Standards Section 2 – Information Model{{/footnote}}. 194 194 ... ... @@ -204,9 +204,11 @@ 204 204 205 205 The possible mapping options are described in more detail in the following sections. 206 206 207 -=== 12.3.2 Mapping from SDMX to VTL data structures === 224 +1. 225 +11. 226 +111. Mapping from SDMX to VTL data structures 208 208 209 - ====12.3.3.1 Basic Mapping====228 +**12.3.3.1 Basic Mapping** 210 210 211 211 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. 212 212 ... ... @@ -222,7 +222,7 @@ 222 222 223 223 With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point. 224 224 225 - ====12.3.3.2 Pivot Mapping====244 +**12.3.3.2 Pivot Mapping** 226 226 227 227 An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD. 228 228 ... ... @@ -253,6 +253,7 @@ 253 253 |DataAttribute not depending on the MeasureDimension|Attribute 254 254 |DataAttribute depending on the MeasureDimension|((( 255 255 One Attribute for each Code of the 275 + 256 256 SDMX MeasureDimension 257 257 ))) 258 258 ... ... @@ -265,10 +265,13 @@ 265 265 266 266 Identifiers, (time) Identifier and Attributes. 267 267 268 -* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 288 +* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure 289 + 290 +Cj 291 + 269 269 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 270 270 271 - ====12.3.3.3 From SDMX DataAttributes to VTL Measures====294 +**12.3.3.3 From SDMX DataAttributes to VTL Measures** 272 272 273 273 * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 274 274 ... ... @@ -278,9 +278,11 @@ 278 278 279 279 Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures. 280 280 281 -=== 12.3.4 Mapping from VTL to SDMX data structures === 304 +1. 305 +11. 306 +111. Mapping from VTL to SDMX data structures 282 282 283 - ====12.3.4.1 Basic Mapping====308 +**12.3.4.1 Basic Mapping** 284 284 285 285 The main mapping method **from VTL to SDMX** is called **Basic **mapping as well. 286 286 ... ... @@ -304,7 +304,7 @@ 304 304 305 305 As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 306 306 307 - ====12.3.4.2 Unpivot Mapping====332 +**12.3.4.2 Unpivot Mapping** 308 308 309 309 An alternative mapping method from VTL to SDMX is the **Unpivot **mapping. 310 310 ... ... @@ -340,7 +340,7 @@ 340 340 341 341 In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 342 342 343 - ====12.3.4.3 From VTL Measures to SDMX Data Attributes====368 +**12.3.4.3 From VTL Measures to SDMX Data Attributes** 344 344 345 345 More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”). 346 346 ... ... @@ -357,7 +357,9 @@ 357 357 358 358 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 359 359 360 -=== 12.3.5 Declaration of the mapping methods between data structures === 385 +1. 386 +11. 387 +111. Declaration of the mapping methods between data structures 361 361 362 362 In order to define and understand properly VTL Transformations, the applied mapping methods must be specified in the SDMX structural metadata. If the default mapping method (Basic) is applied, no specification is needed. 363 363 ... ... @@ -367,10 +367,14 @@ 367 367 368 368 The VtlMappingScheme is a container for zero or more VtlDataflowMapping (it may contain also mappings towards artefacts other than dataflows). 369 369 370 -=== 12.3.6 Mapping dataflow subsets to distinct VTL Data Sets === 397 +1. 398 +11. 399 +111. Mapping dataflow subsets to distinct VTL Data Sets 371 371 372 -Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).401 +Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations 373 373 403 +(corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set). 404 + 374 374 As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}} 375 375 376 376 Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union” …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}} ... ... @@ -463,10 +463,13 @@ 463 463 Some examples follow, for some specific values of INDICATOR and COUNTRY: 464 464 465 465 ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 497 + 466 466 … … … 467 467 468 468 ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 501 + 469 469 ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 503 + 470 470 … … … 471 471 472 472 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: ... ... @@ -473,9 +473,13 @@ 473 473 474 474 VTL dataset INDICATOR value COUNTRY value 475 475 510 + 476 476 ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 512 + 477 477 ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 514 + 478 478 ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 516 + 479 479 ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 480 480 481 481 … … … ... ... @@ -483,15 +483,25 @@ 483 483 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 484 484 485 485 DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 524 + 486 486 DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 526 + 487 487 DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 528 + 488 488 [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 530 + 489 489 DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 532 + 490 490 DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 534 + 491 491 DF2bis_GDPPERCAPITA_CANADA’, 536 + 492 492 … , 538 + 493 493 DF2bis_POPGROWTH_USA’, 540 + 494 494 DF2bis_POPGROWTH_CANADA’ 542 + 495 495 …); 496 496 497 497 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. ... ... @@ -500,7 +500,9 @@ 500 500 501 501 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions). 502 502 503 -=== 12.3.7 Mapping variables and value domains between VTL and SDMX === 551 +1. 552 +11. 553 +111. Mapping variables and value domains between VTL and SDMX 504 504 505 505 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 506 506 ... ... @@ -509,6 +509,7 @@ 509 509 |**Represented Variable**|**Concept** with a definite Representation 510 510 |**Value Domain**|((( 511 511 **Representation** (see the Structure 562 + 512 512 Pattern in the Base Package) 513 513 ))) 514 514 |**Enumerated Value Domain / Code List**|**Codelist** ... ... @@ -515,6 +515,7 @@ 515 515 |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 516 516 |**Described Value Domain**|((( 517 517 non-enumerated** Representation** 569 + 518 518 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 519 519 ))) 520 520 |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or ... ... @@ -538,8 +538,9 @@ 538 538 539 539 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. 540 540 541 -== 12.4 Mapping between SDMX and VTL Data Types == 542 -=== 12.4.1 VTL Data types === 593 +1. 594 +11. Mapping between SDMX and VTL Data Types 595 +111. VTL Data types 543 543 544 544 According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors. 545 545 ... ... @@ -547,15 +547,17 @@ 547 547 548 548 [[image:1750067055028-964.png]] 549 549 550 - **Figure 22 – VTL Data Types**603 +==== Figure 22 – VTL Data Types ==== 551 551 552 552 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 553 553 554 554 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 555 555 556 - **Figure 23 – VTL Basic Scalar Types**609 +==== Figure 23 – VTL Basic Scalar Types ==== 557 557 558 -=== 12.4.2 VTL basic scalar types and SDMX data types === 611 +1. 612 +11. 613 +111. VTL basic scalar types and SDMX data types 559 559 560 560 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. 561 561 ... ... @@ -573,7 +573,9 @@ 573 573 574 574 The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact. 575 575 576 -=== 12.4.3 Mapping SDMX data types to VTL basic scalar types === 631 +1. 632 +11. 633 +111. Mapping SDMX data types to VTL basic scalar types 577 577 578 578 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 579 579 ... ... @@ -580,6 +580,7 @@ 580 580 |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 581 581 |((( 582 582 String 640 + 583 583 (string allowing any character) 584 584 )))|string 585 585 |((( ... ... @@ -589,6 +589,7 @@ 589 589 )))|string 590 590 |((( 591 591 AlphaNumeric 650 + 592 592 (string which only allows A-z and 0-9) 593 593 )))|string 594 594 |((( ... ... @@ -598,70 +598,89 @@ 598 598 )))|string 599 599 |((( 600 600 BigInteger 660 + 601 601 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 602 602 )))|integer 603 603 |((( 604 604 Integer 665 + 605 605 (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 667 + 606 606 (inclusive)) 607 607 )))|integer 608 608 |((( 609 609 Long 672 + 610 610 (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 674 + 611 611 +9223372036854775807 (inclusive)) 612 612 )))|integer 613 613 |((( 614 614 Short 679 + 615 615 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 616 616 )))|integer 617 617 |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 618 618 |((( 619 619 Float 685 + 620 620 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 621 621 )))|number 622 622 |((( 623 623 Double 690 + 624 624 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 625 625 )))|number 626 626 |((( 627 627 Boolean 695 + 628 628 (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 697 + 629 629 binary-valued logic: {true, false}) 630 630 )))|boolean 631 631 |((( 632 632 URI 702 + 633 633 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 634 634 )))|string 635 635 |((( 636 636 Count 707 + 637 637 (an integer following a sequential pattern, increasing by 1 for each occurrence) 638 638 )))|integer 639 639 |((( 640 640 InclusiveValueRange 712 + 641 641 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 642 642 )))|number 643 643 |((( 644 644 ExclusiveValueRange 717 + 645 645 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 646 646 )))|number 647 647 |((( 648 648 Incremental 722 + 649 649 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 650 650 )))|number 651 651 |((( 652 652 ObservationalTimePeriod 727 + 653 653 (superset of StandardTimePeriod and TimeRange) 654 654 )))|time 655 655 |((( 656 656 StandardTimePeriod 732 + 657 657 (superset of BasicTimePeriod and ReportingTimePeriod) 658 658 )))|time 659 659 |((( 660 660 BasicTimePeriod 737 + 661 661 (superset of GregorianTimePeriod and DateTime) 662 662 )))|date 663 663 |((( 664 664 GregorianTimePeriod 742 + 665 665 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 666 666 )))|date 667 667 |GregorianYear (YYYY)|date ... ... @@ -669,26 +669,32 @@ 669 669 |GregorianDay (YYYY-MM-DD)|date 670 670 |((( 671 671 ReportingTimePeriod 750 + 672 672 (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 673 673 )))|time_period 674 674 |((( 675 675 ReportingYear 755 + 676 676 (YYYY-A1 – 1 year period) 677 677 )))|time_period 678 678 |((( 679 679 ReportingSemester 760 + 680 680 (YYYY-Ss – 6 month period) 681 681 )))|time_period 682 682 |((( 683 683 ReportingTrimester 765 + 684 684 (YYYY-Tt – 4 month period) 685 685 )))|time_period 686 686 |((( 687 687 ReportingQuarter 770 + 688 688 (YYYY-Qq – 3 month period) 689 689 )))|time_period 690 690 |((( 691 691 ReportingMonth 775 + 692 692 (YYYY-Mmm – 1 month period) 693 693 )))|time_period 694 694 |ReportingWeek|time_period ... ... @@ -695,34 +695,42 @@ 695 695 | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)| 696 696 |((( 697 697 ReportingDay 782 + 698 698 (YYYY-Dddd – 1 day period) 699 699 )))|time_period 700 700 |((( 701 701 DateTime 787 + 702 702 (YYYY-MM-DDThh:mm:ss) 703 703 )))|date 704 704 |((( 705 705 TimeRange 792 + 706 706 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 707 707 )))|time 708 708 |((( 709 709 Month 797 + 710 710 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 711 711 )))|string 712 712 |((( 713 713 MonthDay 802 + 714 714 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 715 715 )))|string 716 716 |((( 717 717 Day 807 + 718 718 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 719 719 )))|string 720 720 |((( 721 721 Time 812 + 722 722 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 723 723 )))|string 724 724 |((( 725 725 Duration 817 + 726 726 (corresponds to XML Schema xs:duration datatype) 727 727 )))|duration 728 728 |XHTML|Metadata type – not applicable ... ... @@ -855,4 +855,35 @@ 855 855 856 856 ---- 857 857 950 +[[~[1~]>>path:#_ftnref1]] The Validation and Transformation Language is a standard language designed and published under the SDMX initiative. VTL is described in the VTL User and Reference Guides available on the SDMX website [[https:~~/~~/sdmx.org>>url:https://sdmx.org/]][[.>>url:https://sdmx.org/]] 951 + 952 +[[~[2~]>>path:#_ftnref2]] In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New 953 + 954 +[[~[3~]>>path:#_ftnref3]] See also the section "VTL-DL Rulesets" in the VTL Reference Manual. 955 + 956 +[[~[4~]>>path:#_ftnref4]] The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well. 957 + 958 +[[~[5~]>>path:#_ftnref5]] For a complete description of the structure of the URN see the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.2 ("Universal Resource Name (URN)"). 959 + 960 +[[~[6~]>>path:#_ftnref6]] The container-object-id can repeat and may not be present. 961 + 962 +[[~[7~]>>path:#_ftnref7]] i.e., the artefact belongs to a maintainable class 963 + 964 +[[~[8~]>>path:#_ftnref8]] Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names. 965 + 966 +[[~[9~]>>path:#_ftnref9]] For the syntax of the VTL operators see the VTL Reference Manual 967 + 968 +[[~[10~]>>path:#_ftnref10]] In case the invoked artefact is a VTL component, which can be invoked only within the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name (e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced from the data structure of the SDMX Dataflow, which the component belongs to. 969 + 970 +[[~[11~]>>path:#_ftnref11]] If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is considered different even if only part of the composite name is different (for example AgencyA.Dept1.Unit3 is a different Agency than the previous one). Moreover the agency-id cannot be omitted in part (i.e., if a TransformationScheme owned by AgencyA.Dept1.Unit2 references an artefact coming from AgencyA.Dept1.Unit3, the specification of the agency-id becomes mandatory and must be complete, without omitting the possibly equal parts like AgencyA.Dept1) 971 + 972 +[[~[12~]>>path:#_ftnref12]] Single quotes are needed because this reference is not a VTL regular name. ^^19^^ Single quotes are not needed in this case because CL_FREQ is a VTL regular name. 973 + 974 +[[~[13~]>>path:#_ftnref13]] The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR is called SEC 975 + 976 +[[~[14~]>>path:#_ftnref14]] Rulesets of this kind cannot be reused when the referenced Concept has a different representation. 977 + 978 +[[~[15~]>>path:#_ftnref15]] See also the section "VTL-DL Rulesets" in the VTL Reference Manual. 979 + 980 + 858 858 {{putFootnotes/}}