Last modified by Artur on 2025/09/10 11:19

From version 1.14
edited by Helena
on 2025/06/16 13:14
Change comment: There is no comment for this version
To version 1.11
edited by Helena
on 2025/06/16 13:08
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -222,7 +222,7 @@
222 222  
223 223  With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point.
224 224  
225 -==== 12.3.3.2 Pivot Mapping ====
225 +**12.3.3.2 Pivot Mapping**
226 226  
227 227  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
228 228  
... ... @@ -253,6 +253,7 @@
253 253  |DataAttribute not depending on the MeasureDimension|Attribute
254 254  |DataAttribute depending on the MeasureDimension|(((
255 255  One Attribute for each Code of the
256 +
256 256  SDMX MeasureDimension
257 257  )))
258 258  
... ... @@ -265,10 +265,13 @@
265 265  
266 266  Identifiers, (time) Identifier and Attributes.
267 267  
268 -* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
269 +* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure
270 +
271 +Cj
272 +
269 269  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
270 270  
271 -==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
275 +**12.3.3.3 From SDMX DataAttributes to VTL Measures**
272 272  
273 273  * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
274 274  
... ... @@ -278,9 +278,11 @@
278 278  
279 279  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
280 280  
281 -=== 12.3.4 Mapping from VTL to SDMX data structures ===
285 +1.
286 +11.
287 +111. Mapping from VTL to SDMX data structures
282 282  
283 -==== 12.3.4.1 Basic Mapping ====
289 +**12.3.4.1 Basic Mapping**
284 284  
285 285  The main mapping method **from VTL to SDMX** is called **Basic **mapping as well.
286 286  
... ... @@ -304,7 +304,7 @@
304 304  
305 305  As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
306 306  
307 -==== 12.3.4.2 Unpivot Mapping ====
313 +**12.3.4.2 Unpivot Mapping**
308 308  
309 309  An alternative mapping method from VTL to SDMX is the **Unpivot **mapping.
310 310  
... ... @@ -340,7 +340,7 @@
340 340  
341 341  In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
342 342  
343 -==== 12.3.4.3 From VTL Measures to SDMX Data Attributes ====
349 +**12.3.4.3 From VTL Measures to SDMX Data Attributes**
344 344  
345 345  More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”).
346 346  
... ... @@ -357,7 +357,9 @@
357 357  
358 358  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
359 359  
360 -=== 12.3.5 Declaration of the mapping methods between data structures ===
366 +1.
367 +11.
368 +111. Declaration of the mapping methods between data structures
361 361  
362 362  In order to define and understand properly VTL Transformations, the applied mapping methods must be specified in the SDMX structural metadata. If the default mapping method (Basic) is applied, no specification is needed.
363 363  
... ... @@ -367,10 +367,14 @@
367 367  
368 368  The VtlMappingScheme is a container for zero or more VtlDataflowMapping (it may contain also mappings towards artefacts other than dataflows).
369 369  
370 -=== 12.3.6 Mapping dataflow subsets to distinct VTL Data Sets ===
378 +1.
379 +11.
380 +111. Mapping dataflow subsets to distinct VTL Data Sets
371 371  
372 -Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
382 +Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations
373 373  
384 +(corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
385 +
374 374  As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}}
375 375  
376 376  Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union” …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}}
... ... @@ -463,10 +463,13 @@
463 463  Some examples follow, for some specific values of INDICATOR and COUNTRY:
464 464  
465 465  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
478 +
466 466  … … …
467 467  
468 468  ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
482 +
469 469  ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
484 +
470 470  … … …
471 471  
472 472  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
... ... @@ -473,9 +473,13 @@
473 473  
474 474  VTL dataset   INDICATOR value COUNTRY value
475 475  
491 +
476 476  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
493 +
477 477  ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
495 +
478 478  ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
497 +
479 479  ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
480 480  
481 481  … … …
... ... @@ -483,15 +483,25 @@
483 483  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
484 484  
485 485  DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
505 +
486 486  DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
507 +
487 487  DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
509 +
488 488  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
511 +
489 489  DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
513 +
490 490  DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
515 +
491 491  DF2bis_GDPPERCAPITA_CANADA’,
517 +
492 492  … ,
519 +
493 493  DF2bis_POPGROWTH_USA’,
521 +
494 494  DF2bis_POPGROWTH_CANADA’
523 +
495 495  …);
496 496  
497 497  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -500,7 +500,9 @@
500 500  
501 501  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
502 502  
503 -=== 12.3.7 Mapping variables and value domains between VTL and SDMX ===
532 +1.
533 +11.
534 +111. Mapping variables and value domains between VTL and SDMX
504 504  
505 505  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
506 506  
... ... @@ -509,6 +509,7 @@
509 509  |**Represented Variable**|**Concept** with a definite Representation
510 510  |**Value Domain**|(((
511 511  **Representation** (see the Structure
543 +
512 512  Pattern in the Base Package)
513 513  )))
514 514  |**Enumerated Value Domain / Code List**|**Codelist**
... ... @@ -515,6 +515,7 @@
515 515  |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
516 516  |**Described Value Domain**|(((
517 517  non-enumerated** Representation**
550 +
518 518  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
519 519  )))
520 520  |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
... ... @@ -538,8 +538,9 @@
538 538  
539 539  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
540 540  
541 -== 12.4 Mapping between SDMX and VTL Data Types ==
542 -=== 12.4.1 VTL Data types ===
574 +1.
575 +11. Mapping between SDMX and VTL Data Types
576 +111. VTL Data types
543 543  
544 544  According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors.
545 545  
... ... @@ -547,15 +547,17 @@
547 547  
548 548  [[image:1750067055028-964.png]]
549 549  
550 -**Figure 22 – VTL Data Types**
584 +==== Figure 22 – VTL Data Types ====
551 551  
552 552  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
553 553  
554 554  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
555 555  
556 -**Figure 23 – VTL Basic Scalar Types**
590 +==== Figure 23 – VTL Basic Scalar Types ====
557 557  
558 -=== 12.4.2 VTL basic scalar types and SDMX data types ===
592 +1.
593 +11.
594 +111. VTL basic scalar types and SDMX data types
559 559  
560 560  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
561 561  
... ... @@ -573,7 +573,9 @@
573 573  
574 574  The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact.
575 575  
576 -=== 12.4.3 Mapping SDMX data types to VTL basic scalar types ===
612 +1.
613 +11.
614 +111. Mapping SDMX data types to VTL basic scalar types
577 577  
578 578  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
579 579  
... ... @@ -580,6 +580,7 @@
580 580  |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
581 581  |(((
582 582  String
621 +
583 583  (string allowing any character)
584 584  )))|string
585 585  |(((
... ... @@ -589,6 +589,7 @@
589 589  )))|string
590 590  |(((
591 591  AlphaNumeric
631 +
592 592  (string which only allows A-z and 0-9)
593 593  )))|string
594 594  |(((
... ... @@ -598,70 +598,89 @@
598 598  )))|string
599 599  |(((
600 600  BigInteger
641 +
601 601  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
602 602  )))|integer
603 603  |(((
604 604  Integer
646 +
605 605  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
648 +
606 606  (inclusive))
607 607  )))|integer
608 608  |(((
609 609  Long
653 +
610 610  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
655 +
611 611  +9223372036854775807 (inclusive))
612 612  )))|integer
613 613  |(((
614 614  Short
660 +
615 615  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
616 616  )))|integer
617 617  |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
618 618  |(((
619 619  Float
666 +
620 620  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
621 621  )))|number
622 622  |(((
623 623  Double
671 +
624 624  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
625 625  )))|number
626 626  |(((
627 627  Boolean
676 +
628 628  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
678 +
629 629  binary-valued logic: {true, false})
630 630  )))|boolean
631 631  |(((
632 632  URI
683 +
633 633  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
634 634  )))|string
635 635  |(((
636 636  Count
688 +
637 637  (an integer following a sequential pattern, increasing by 1 for each occurrence)
638 638  )))|integer
639 639  |(((
640 640  InclusiveValueRange
693 +
641 641  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
642 642  )))|number
643 643  |(((
644 644  ExclusiveValueRange
698 +
645 645  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
646 646  )))|number
647 647  |(((
648 648  Incremental
703 +
649 649  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
650 650  )))|number
651 651  |(((
652 652  ObservationalTimePeriod
708 +
653 653  (superset of StandardTimePeriod and TimeRange)
654 654  )))|time
655 655  |(((
656 656  StandardTimePeriod
713 +
657 657  (superset of BasicTimePeriod and ReportingTimePeriod)
658 658  )))|time
659 659  |(((
660 660  BasicTimePeriod
718 +
661 661  (superset of GregorianTimePeriod and DateTime)
662 662  )))|date
663 663  |(((
664 664  GregorianTimePeriod
723 +
665 665  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
666 666  )))|date
667 667  |GregorianYear (YYYY)|date
... ... @@ -669,26 +669,32 @@
669 669  |GregorianDay (YYYY-MM-DD)|date
670 670  |(((
671 671  ReportingTimePeriod
731 +
672 672  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
673 673  )))|time_period
674 674  |(((
675 675  ReportingYear
736 +
676 676  (YYYY-A1 – 1 year period)
677 677  )))|time_period
678 678  |(((
679 679  ReportingSemester
741 +
680 680  (YYYY-Ss – 6 month period)
681 681  )))|time_period
682 682  |(((
683 683  ReportingTrimester
746 +
684 684  (YYYY-Tt – 4 month period)
685 685  )))|time_period
686 686  |(((
687 687  ReportingQuarter
751 +
688 688  (YYYY-Qq – 3 month period)
689 689  )))|time_period
690 690  |(((
691 691  ReportingMonth
756 +
692 692  (YYYY-Mmm – 1 month period)
693 693  )))|time_period
694 694  |ReportingWeek|time_period
... ... @@ -695,34 +695,42 @@
695 695  | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
696 696  |(((
697 697  ReportingDay
763 +
698 698  (YYYY-Dddd – 1 day period)
699 699  )))|time_period
700 700  |(((
701 701  DateTime
768 +
702 702  (YYYY-MM-DDThh:mm:ss)
703 703  )))|date
704 704  |(((
705 705  TimeRange
773 +
706 706  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
707 707  )))|time
708 708  |(((
709 709  Month
778 +
710 710  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
711 711  )))|string
712 712  |(((
713 713  MonthDay
783 +
714 714  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
715 715  )))|string
716 716  |(((
717 717  Day
788 +
718 718  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
719 719  )))|string
720 720  |(((
721 721  Time
793 +
722 722  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
723 723  )))|string
724 724  |(((
725 725  Duration
798 +
726 726  (corresponds to XML Schema xs:duration datatype)
727 727  )))|duration
728 728  |XHTML|Metadata type – not applicable
... ... @@ -730,20 +730,27 @@
730 730  |IdentifiableReference|Metadata type – not applicable
731 731  |DataSetReference|Metadata type – not applicable
732 732  
733 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
806 +додол
734 734  
808 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
809 +
735 735  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
736 736  
737 -=== 12.4.4 Mapping VTL basic scalar types to SDMX data types ===
812 +1.
813 +11.
814 +111. Mapping VTL basic scalar types to SDMX data types
738 738  
739 739  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
740 740  
741 741  |(((
742 742  VTL basic
820 +
743 743  scalar type
744 744  )))|(((
745 745  Default SDMX data type
824 +
746 746  (BasicComponentDataType
826 +
747 747  )
748 748  )))|Default output format
749 749  |String|String|Like XML (xs:string)
... ... @@ -753,15 +753,17 @@
753 753  |Time|StandardTimePeriod|<date>/<date> (as defined above)
754 754  |time_period|(((
755 755  ReportingTimePeriod
836 +
756 756  (StandardReportingPeriod)
757 757  )))|(((
758 758   YYYY-Pppp
840 +
759 759  (according to SDMX )
760 760  )))
761 761  |Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
762 762  |Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
763 763  
764 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
846 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
765 765  
766 766  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
767 767  
... ... @@ -819,13 +819,17 @@
819 819  
820 820  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
821 821  
822 -=== 12.4.3 Null Values ===
904 +1.
905 +11.
906 +111. Null Values
823 823  
824 824  In the conversions from SDMX to VTL it is assumed by default that a missing value in SDMX becomes a NULL in VTL. After the conversion, the NULLs can be manipulated through the proper VTL operators.
825 825  
826 826  On the other side, the VTL programs can produce in output NULL values for Measures and Attributes (Null values are not allowed in the Identifiers). In the conversion from VTL to SDMX, it is assumed that a NULL in VTL becomes a missing value in SDMX. In the conversion from VTL to SDMX, the default assumption can be overridden, separately for each VTL basic scalar type, by specifying which the value that represents the NULL in SDMX is. This can be specified in the attribute "nullValue" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). A CustomType belongs to a CustomTypeScheme, which can be referenced by one or more TransformationScheme (i.e. VTL programs). The overriding assumption is applied for all the SDMX Dataflows calculated in the TransformationScheme.
827 827  
828 -=== 12.4.5 Format of the literals used in VTL Transformations ===
912 +1.
913 +11.
914 +111. Format of the literals used in VTL Transformations
829 829  
830 830  The VTL programs can contain literals, i.e. specific values of certain data types written directly in the VTL definitions or expressions. The VTL does not prescribe a specific format for the literals and leave the specific VTL systems and the definers of VTL Transformations free of using their preferred formats.
831 831  
... ... @@ -839,6 +839,7 @@
839 839  
840 840  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
841 841  
928 +
842 842  ----
843 843  
844 844  {{putFootnotes/}}