Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -463,10 +463,13 @@ 463 463 Some examples follow, for some specific values of INDICATOR and COUNTRY: 464 464 465 465 ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 466 + 466 466 … … … 467 467 468 468 ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 470 + 469 469 ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 472 + 470 470 … … … 471 471 472 472 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: ... ... @@ -473,9 +473,13 @@ 473 473 474 474 VTL dataset INDICATOR value COUNTRY value 475 475 479 + 476 476 ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 481 + 477 477 ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 483 + 478 478 ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 485 + 479 479 ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 480 480 481 481 … … … ... ... @@ -483,15 +483,25 @@ 483 483 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 484 484 485 485 DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 493 + 486 486 DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 495 + 487 487 DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 497 + 488 488 [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 499 + 489 489 DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 501 + 490 490 DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 503 + 491 491 DF2bis_GDPPERCAPITA_CANADA’, 505 + 492 492 … , 507 + 493 493 DF2bis_POPGROWTH_USA’, 509 + 494 494 DF2bis_POPGROWTH_CANADA’ 511 + 495 495 …); 496 496 497 497 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. ... ... @@ -500,7 +500,9 @@ 500 500 501 501 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions). 502 502 503 -=== 12.3.7 Mapping variables and value domains between VTL and SDMX === 520 +1. 521 +11. 522 +111. Mapping variables and value domains between VTL and SDMX 504 504 505 505 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 506 506 ... ... @@ -509,6 +509,7 @@ 509 509 |**Represented Variable**|**Concept** with a definite Representation 510 510 |**Value Domain**|((( 511 511 **Representation** (see the Structure 531 + 512 512 Pattern in the Base Package) 513 513 ))) 514 514 |**Enumerated Value Domain / Code List**|**Codelist** ... ... @@ -515,6 +515,7 @@ 515 515 |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 516 516 |**Described Value Domain**|((( 517 517 non-enumerated** Representation** 538 + 518 518 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 519 519 ))) 520 520 |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or ... ... @@ -538,8 +538,9 @@ 538 538 539 539 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. 540 540 541 -== 12.4 Mapping between SDMX and VTL Data Types == 542 -=== 12.4.1 VTL Data types === 562 +1. 563 +11. Mapping between SDMX and VTL Data Types 564 +111. VTL Data types 543 543 544 544 According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors. 545 545 ... ... @@ -547,15 +547,17 @@ 547 547 548 548 [[image:1750067055028-964.png]] 549 549 550 - **Figure 22 – VTL Data Types**572 +==== Figure 22 – VTL Data Types ==== 551 551 552 552 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 553 553 554 554 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 555 555 556 - **Figure 23 – VTL Basic Scalar Types**578 +==== Figure 23 – VTL Basic Scalar Types ==== 557 557 558 -=== 12.4.2 VTL basic scalar types and SDMX data types === 580 +1. 581 +11. 582 +111. VTL basic scalar types and SDMX data types 559 559 560 560 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. 561 561 ... ... @@ -573,7 +573,9 @@ 573 573 574 574 The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact. 575 575 576 -=== 12.4.3 Mapping SDMX data types to VTL basic scalar types === 600 +1. 601 +11. 602 +111. Mapping SDMX data types to VTL basic scalar types 577 577 578 578 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 579 579 ... ... @@ -580,6 +580,7 @@ 580 580 |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 581 581 |((( 582 582 String 609 + 583 583 (string allowing any character) 584 584 )))|string 585 585 |((( ... ... @@ -589,6 +589,7 @@ 589 589 )))|string 590 590 |((( 591 591 AlphaNumeric 619 + 592 592 (string which only allows A-z and 0-9) 593 593 )))|string 594 594 |((( ... ... @@ -598,70 +598,89 @@ 598 598 )))|string 599 599 |((( 600 600 BigInteger 629 + 601 601 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 602 602 )))|integer 603 603 |((( 604 604 Integer 634 + 605 605 (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 636 + 606 606 (inclusive)) 607 607 )))|integer 608 608 |((( 609 609 Long 641 + 610 610 (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 643 + 611 611 +9223372036854775807 (inclusive)) 612 612 )))|integer 613 613 |((( 614 614 Short 648 + 615 615 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 616 616 )))|integer 617 617 |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 618 618 |((( 619 619 Float 654 + 620 620 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 621 621 )))|number 622 622 |((( 623 623 Double 659 + 624 624 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 625 625 )))|number 626 626 |((( 627 627 Boolean 664 + 628 628 (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 666 + 629 629 binary-valued logic: {true, false}) 630 630 )))|boolean 631 631 |((( 632 632 URI 671 + 633 633 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 634 634 )))|string 635 635 |((( 636 636 Count 676 + 637 637 (an integer following a sequential pattern, increasing by 1 for each occurrence) 638 638 )))|integer 639 639 |((( 640 640 InclusiveValueRange 681 + 641 641 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 642 642 )))|number 643 643 |((( 644 644 ExclusiveValueRange 686 + 645 645 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 646 646 )))|number 647 647 |((( 648 648 Incremental 691 + 649 649 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 650 650 )))|number 651 651 |((( 652 652 ObservationalTimePeriod 696 + 653 653 (superset of StandardTimePeriod and TimeRange) 654 654 )))|time 655 655 |((( 656 656 StandardTimePeriod 701 + 657 657 (superset of BasicTimePeriod and ReportingTimePeriod) 658 658 )))|time 659 659 |((( 660 660 BasicTimePeriod 706 + 661 661 (superset of GregorianTimePeriod and DateTime) 662 662 )))|date 663 663 |((( 664 664 GregorianTimePeriod 711 + 665 665 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 666 666 )))|date 667 667 |GregorianYear (YYYY)|date ... ... @@ -669,26 +669,32 @@ 669 669 |GregorianDay (YYYY-MM-DD)|date 670 670 |((( 671 671 ReportingTimePeriod 719 + 672 672 (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 673 673 )))|time_period 674 674 |((( 675 675 ReportingYear 724 + 676 676 (YYYY-A1 – 1 year period) 677 677 )))|time_period 678 678 |((( 679 679 ReportingSemester 729 + 680 680 (YYYY-Ss – 6 month period) 681 681 )))|time_period 682 682 |((( 683 683 ReportingTrimester 734 + 684 684 (YYYY-Tt – 4 month period) 685 685 )))|time_period 686 686 |((( 687 687 ReportingQuarter 739 + 688 688 (YYYY-Qq – 3 month period) 689 689 )))|time_period 690 690 |((( 691 691 ReportingMonth 744 + 692 692 (YYYY-Mmm – 1 month period) 693 693 )))|time_period 694 694 |ReportingWeek|time_period ... ... @@ -695,34 +695,42 @@ 695 695 | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)| 696 696 |((( 697 697 ReportingDay 751 + 698 698 (YYYY-Dddd – 1 day period) 699 699 )))|time_period 700 700 |((( 701 701 DateTime 756 + 702 702 (YYYY-MM-DDThh:mm:ss) 703 703 )))|date 704 704 |((( 705 705 TimeRange 761 + 706 706 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 707 707 )))|time 708 708 |((( 709 709 Month 766 + 710 710 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 711 711 )))|string 712 712 |((( 713 713 MonthDay 771 + 714 714 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 715 715 )))|string 716 716 |((( 717 717 Day 776 + 718 718 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 719 719 )))|string 720 720 |((( 721 721 Time 781 + 722 722 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 723 723 )))|string 724 724 |((( 725 725 Duration 786 + 726 726 (corresponds to XML Schema xs:duration datatype) 727 727 )))|duration 728 728 |XHTML|Metadata type – not applicable ... ... @@ -730,20 +730,27 @@ 730 730 |IdentifiableReference|Metadata type – not applicable 731 731 |DataSetReference|Metadata type – not applicable 732 732 733 - **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**794 +додол 734 734 796 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 797 + 735 735 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 736 736 737 -=== 12.4.4 Mapping VTL basic scalar types to SDMX data types === 800 +1. 801 +11. 802 +111. Mapping VTL basic scalar types to SDMX data types 738 738 739 739 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 740 740 741 741 |((( 742 742 VTL basic 808 + 743 743 scalar type 744 744 )))|((( 745 745 Default SDMX data type 812 + 746 746 (BasicComponentDataType 814 + 747 747 ) 748 748 )))|Default output format 749 749 |String|String|Like XML (xs:string) ... ... @@ -753,15 +753,17 @@ 753 753 |Time|StandardTimePeriod|<date>/<date> (as defined above) 754 754 |time_period|((( 755 755 ReportingTimePeriod 824 + 756 756 (StandardReportingPeriod) 757 757 )))|((( 758 758 YYYY-Pppp 828 + 759 759 (according to SDMX ) 760 760 ))) 761 761 |Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS 762 762 |Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 763 763 764 - **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**834 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 765 765 766 766 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section 767 767 ... ... @@ -819,13 +819,17 @@ 819 819 820 820 The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 821 821 822 -=== 12.4.3 Null Values === 892 +1. 893 +11. 894 +111. Null Values 823 823 824 824 In the conversions from SDMX to VTL it is assumed by default that a missing value in SDMX becomes a NULL in VTL. After the conversion, the NULLs can be manipulated through the proper VTL operators. 825 825 826 826 On the other side, the VTL programs can produce in output NULL values for Measures and Attributes (Null values are not allowed in the Identifiers). In the conversion from VTL to SDMX, it is assumed that a NULL in VTL becomes a missing value in SDMX. In the conversion from VTL to SDMX, the default assumption can be overridden, separately for each VTL basic scalar type, by specifying which the value that represents the NULL in SDMX is. This can be specified in the attribute "nullValue" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). A CustomType belongs to a CustomTypeScheme, which can be referenced by one or more TransformationScheme (i.e. VTL programs). The overriding assumption is applied for all the SDMX Dataflows calculated in the TransformationScheme. 827 827 828 -=== 12.4.5 Format of the literals used in VTL Transformations === 900 +1. 901 +11. 902 +111. Format of the literals used in VTL Transformations 829 829 830 830 The VTL programs can contain literals, i.e. specific values of certain data types written directly in the VTL definitions or expressions. The VTL does not prescribe a specific format for the literals and leave the specific VTL systems and the definers of VTL Transformations free of using their preferred formats. 831 831 ... ... @@ -839,6 +839,7 @@ 839 839 840 840 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 841 841 916 + 842 842 ---- 843 843 844 844 {{putFootnotes/}}