Last modified by Artur on 2025/09/10 11:19

From version 1.16
edited by Helena
on 2025/06/16 13:19
Change comment: There is no comment for this version
To version 1.26
edited by Helena
on 2025/06/16 13:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -80,9 +80,9 @@
80 80  
81 81  For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as{{footnote}}Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.{{/footnote}}:
82 82  
83 ->(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
84 ->(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
85 ->(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
83 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
84 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
85 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
86 86  
87 87  === 12.2.3 Abbreviation of the URN ===
88 88  
... ... @@ -97,7 +97,8 @@
97 97  ** "codelist" for the class Codelist.
98 98  * The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator{{footnote}}For the syntax of the VTL operators see the VTL Reference Manual{{/footnote}}, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}In case the invoked artefact is a VTL component, which can be invoked only within the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name (e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced from the data structure of the SDMX Dataflow, which the component belongs to.{{/footnote}}.
99 99  * If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency{{footnote}}If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is considered different even if only part of the composite name is different (for example AgencyA.Dept1.Unit3 is a different Agency than the previous one). Moreover the agency-id cannot be omitted in part (i.e., if a TransformationScheme owned by AgencyA.Dept1.Unit2 references an artefact coming from AgencyA.Dept1.Unit3, the specification of the agency-id becomes mandatory and must be complete, without omitting the possibly equal parts like AgencyA.Dept1){{/footnote}}. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements).
100 -* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
100 +* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted:
101 +** if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
101 101  ** if the referenced artefact is a Dimension, TimeDimension, Measure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions;
102 102  ** if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class, the maintained object is the conceptScheme-id and cannot be omitted;
103 103  ** if the referenced artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the codelist-id and obviously cannot be omitted.
... ... @@ -109,51 +109,47 @@
109 109  
110 110  For example, the full formulation that uses the complete URN shown at the end of the previous paragraph:
111 111  
112 -'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
113 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
114 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
115 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
113 113  
114 -'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
115 -
116 -'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
117 -
118 118  by omitting all the non-essential parts would become simply:
119 119  
120 -DFR := DF1 + DF2
119 +> DFR  : =  DF1 + DF2
121 121  
122 122  The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:
123 123  
124 -'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
123 +> 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
125 125  
126 126  if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^:
127 127  
128 -CL_FREQ
127 +> CL_FREQ
129 129  
130 130  As for the references to the components, it can be enough to specify the componentId, given that the dataStructure-Id can be omitted. An example of non-abbreviated reference, if the data structure is DST1 and the component is SECTOR, is the following:
131 131  
132 -'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S
131 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S ECTOR'
133 133  
134 -ECTOR'
135 -
136 136  The corresponding fully abbreviated reference, if made from a TransformationScheme belonging to AG, would become simply:
137 137  
138 -SECTOR
135 +> SECTOR
139 139  
140 140  For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as{{footnote}}The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR is called SEC{{/footnote}}:
141 141  
142 -'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
139 +> 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
143 143  
144 144  In the references to the Concepts, which can exist for example in the definition of the VTL Rulesets, at least the conceptScheme-id and the concept-id must be specified.
145 145  
146 146  An example of non-abbreviated reference, if the conceptScheme-id is CS1 and the concept-id is SECTOR, is the following:
147 147  
148 -'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
145 +> 'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
149 149  
150 150  The corresponding fully abbreviated reference, if made from a RulesetScheme belonging to AG, would become simply:
151 151  
152 -CS1(1.0.0).SECTOR
149 +> CS1(1.0.0).SECTOR
153 153  
154 154  The Codes and in general all the Values can be written without any other specification, for example, the transformation to check if the values of the measures of the Dataflow DF1 are between 0 and 25000 can be written like follows:
155 155  
156 -'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
153 +> 'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
157 157  
158 158  The artefact (Component, Concept, Codelist …) which the Values are referred to can be deduced from the context in which the reference is made, taking also into account the VTL syntax. In the Transformation above, for example, the values 0 and 2500 are compared to the values of the measures of DF1(1.0.0).
159 159  
... ... @@ -201,7 +201,7 @@
201 201  
202 202  The possible mapping options are described in more detail in the following sections.
203 203  
204 -=== 12.3.2 Mapping from SDMX to VTL data structures ===
201 +=== 12.3.3 Mapping from SDMX to VTL data structures ===
205 205  
206 206  ==== 12.3.3.1 Basic Mapping ====
207 207  
... ... @@ -209,11 +209,12 @@
209 209  
210 210  When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
211 211  
212 -|**SDMX**|**VTL**
213 -|Dimension|(Simple) Identifier
214 -|TimeDimension|(Time) Identifier
215 -|Measure|Measure
216 -|DataAttribute|Attribute
209 +(% style="width:468.294px" %)
210 +|(% style="width:196px" %)**SDMX**|(% style="width:269px" %)**VTL**
211 +|(% style="width:196px" %)Dimension|(% style="width:269px" %)(Simple) Identifier
212 +|(% style="width:196px" %)TimeDimension|(% style="width:269px" %)(Time) Identifier
213 +|(% style="width:196px" %)Measure|(% style="width:269px" %)Measure
214 +|(% style="width:196px" %)DataAttribute|(% style="width:269px" %)Attribute
217 217  
218 218  The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
219 219  
... ... @@ -223,10 +223,8 @@
223 223  
224 224  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
225 225  
226 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the
224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
227 227  
228 -MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
229 -
230 230  Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension.
231 231  
232 232  If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph).
... ... @@ -239,16 +239,18 @@
239 239  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
240 240  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
241 241  ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
242 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
239 +** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
243 243  
244 244  The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
245 245  
246 -|**SDMX**|**VTL**
247 -|Dimension|(Simple) Identifier
248 -|TimeDimension|(Time) Identifier
249 -|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension
250 -|DataAttribute not depending on the MeasureDimension|Attribute
251 -|DataAttribute depending on the MeasureDimension|(((
243 +(% style="width:739.294px" %)
244 +|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL**
245 +|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier
246 +|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier
247 +|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension
248 +|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute
249 +|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)(((
252 252  One Attribute for each Code of the
253 253  SDMX MeasureDimension
254 254  )))
... ... @@ -258,19 +258,14 @@
258 258  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
259 259  
260 260  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
261 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
262 -
263 -Identifiers, (time) Identifier and Attributes.
264 -
259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
265 265  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
266 266  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
267 267  
268 268  ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
269 269  
270 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
271 271  
272 -Attributes.
273 -
274 274  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
275 275  
276 276  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
... ... @@ -287,11 +287,12 @@
287 287  
288 288  Mapping table:
289 289  
290 -|**VTL**|**SDMX**
291 -|(Simple) Identifier|Dimension
292 -|(Time) Identifier|TimeDimension
293 -|Measure|Measure
294 -|Attribute|DataAttribute
283 +(% style="width:470.294px" %)
284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX**
285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension
286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension
287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure
288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute
295 295  
296 296  If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
297 297  
... ... @@ -319,11 +319,12 @@
319 319  
320 320  The summary mapping table of the **unpivot** mapping method is the following:
321 321  
322 -|**VTL**|**SDMX**
323 -|(Simple) Identifier|Dimension
324 -|(Time) Identifier|TimeDimension
325 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure
326 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
316 +(% style="width:638.294px" %)
317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX**
318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension
319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension
320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure
321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
327 327  
328 328  At observation / data point level:
329 329  
... ... @@ -345,12 +345,13 @@
345 345  
346 346  The mapping table is the following:
347 347  
348 -|VTL|SDMX
349 -|(Simple) Identifier|Dimension
350 -|(Time) Identifier|TimeDimension
351 -|Some Measures|Measure
352 -|Other Measures|DataAttribute
353 -|Attribute|DataAttribute
343 +(% style="width:467.294px" %)
344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX
345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension
346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension
347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure
348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute
349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute
354 354  
355 355  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
356 356  
... ... @@ -388,11 +388,11 @@
388 388  
389 389  Therefore, the generic name of this kind of VTL datasets would be:
390 390  
391 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
392 392  
393 393  Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be:
394 394  
395 -‘DF(1.0.0)/POPULATION.USA’
391 +> ‘DF(1.0.0)/POPULATION.USA’
396 396  
397 397  In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA.
398 398  
... ... @@ -406,26 +406,22 @@
406 406  
407 407  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
408 408  
409 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
410 410  
411 -basic, pivot …).
412 -
413 413  In the example above, for all the datasets of the kind
414 414  
415 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
416 416  
417 417  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
418 418  
419 -‘DF1(1.0.0)/POPULATION.USA’ :=
413 +> ‘DF1(1.0.0)/POPULATION.USA’ :=
414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
415 +>
416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ :=
417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
418 +>
419 +> … … …
420 420  
421 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
422 -
423 -‘DF1(1.0.0)/POPULATION.CANADA’ :=
424 -
425 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
426 -
427 -… … …
428 -
429 429  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
430 430  
431 431  In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
... ... @@ -434,10 +434,9 @@
434 434  
435 435  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
436 436  
437 -‘DF1(1.0.0)/POPULATION.’ :=
429 +> ‘DF1(1.0.0)/POPULATION.’ :=
430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
438 438  
439 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
440 -
441 441  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
442 442  
443 443  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations.
... ... @@ -455,41 +455,38 @@
455 455  
456 456  The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
457 457  
458 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
459 459  
460 460  Some examples follow, for some specific values of INDICATOR and COUNTRY:
461 461  
462 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
463 -… … …
453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
454 +> … … …
455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
457 +> … … …
464 464  
465 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
466 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
467 -… … …
468 -
469 469  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
470 470  
471 471  VTL dataset   INDICATOR value COUNTRY value
472 472  
473 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
474 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
475 -‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
476 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
465 +> ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
466 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
467 +> … … …
477 477  
478 -… … …
479 -
480 480  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
481 481  
482 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
483 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
484 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
485 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
486 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
487 -DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
488 -DF2bis_GDPPERCAPITA_CANADA’,
489 -… ,
490 -DF2bis_POPGROWTH_USA’,
491 -DF2bis_POPGROWTH_CANADA’
492 -…);
471 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
472 +> DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
473 +> DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
474 +> DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
475 +> DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
476 +> DF2bis_GDPPERCAPITA_CANADA’,
477 +> … ,
478 +> DF2bis_POPGROWTH_USA’,
479 +> DF2bis_POPGROWTH_CANADA’
480 +> …);
493 493  
494 494  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
495 495  
... ... @@ -501,25 +501,26 @@
501 501  
502 502  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
503 503  
504 -|VTL|SDMX
505 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
506 -|**Represented Variable**|**Concept** with a definite Representation
507 -|**Value Domain**|(((
492 +(% style="width:706.294px" %)
493 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX
494 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
495 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation
496 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)(((
508 508  **Representation** (see the Structure
509 509  Pattern in the Base Package)
510 510  )))
511 -|**Enumerated Value Domain / Code List**|**Codelist**
512 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
513 -|**Described Value Domain**|(((
500 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist**
501 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
502 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)(((
514 514  non-enumerated** Representation**
515 515  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
516 516  )))
517 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
518 -| |to a valid **value **(for non-enumerated** **Representations)
519 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
520 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
521 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
522 -|**Set list**|This abstraction does not exist in SDMX
506 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
507 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations)
508 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
509 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
510 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
511 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX
523 523  
524 524  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
525 525  
... ... @@ -527,8 +527,10 @@
527 527  
528 528  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
529 529  
530 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
519 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
531 531  
521 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
522 +
532 532  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
533 533  
534 534  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
... ... @@ -543,8 +543,9 @@
543 543  
544 544  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
545 545  
546 -[[image:1750067055028-964.png]]
547 547  
538 +[[image:1750070288958-132.png]]
539 +
548 548  **Figure 22 – VTL Data Types**
549 549  
550 550  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
... ... @@ -551,6 +551,8 @@
551 551  
552 552  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
553 553  
546 +[[image:1750070310572-584.png]]
547 +
554 554  **Figure 23 – VTL Basic Scalar Types**
555 555  
556 556  === 12.4.2 VTL basic scalar types and SDMX data types ===
... ... @@ -575,158 +575,157 @@
575 575  
576 576  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
577 577  
578 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
579 -|(((
572 +(% style="width:583.294px" %)
573 +|(% style="width:360px" %)SDMX data type (BasicComponentDataType)|(% style="width:221px" %)Default VTL basic scalar type
574 +|(% style="width:360px" %)(((
580 580  String
581 581  (string allowing any character)
582 -)))|string
583 -|(((
584 -Alpha 
585 -
577 +)))|(% style="width:221px" %)string
578 +|(% style="width:360px" %)(((
579 +Alpha
586 586  (string which only allows A-z)
587 -)))|string
588 -|(((
581 +)))|(% style="width:221px" %)string
582 +|(% style="width:360px" %)(((
589 589  AlphaNumeric
590 590  (string which only allows A-z and 0-9)
591 -)))|string
592 -|(((
585 +)))|(% style="width:221px" %)string
586 +|(% style="width:360px" %)(((
593 593  Numeric
594 -
595 595  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
596 -)))|string
597 -|(((
589 +)))|(% style="width:221px" %)string
590 +|(% style="width:360px" %)(((
598 598  BigInteger
599 599  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
600 -)))|integer
601 -|(((
593 +)))|(% style="width:221px" %)integer
594 +|(% style="width:360px" %)(((
602 602  Integer
603 603  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
604 604  (inclusive))
605 -)))|integer
606 -|(((
598 +)))|(% style="width:221px" %)integer
599 +|(% style="width:360px" %)(((
607 607  Long
608 608  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
609 609  +9223372036854775807 (inclusive))
610 -)))|integer
611 -|(((
603 +)))|(% style="width:221px" %)integer
604 +|(% style="width:360px" %)(((
612 612  Short
613 613  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
614 -)))|integer
615 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
616 -|(((
607 +)))|(% style="width:221px" %)integer
608 +|(% style="width:360px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:221px" %)number
609 +|(% style="width:360px" %)(((
617 617  Float
618 618  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
619 -)))|number
620 -|(((
612 +)))|(% style="width:221px" %)number
613 +|(% style="width:360px" %)(((
621 621  Double
622 622  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
623 -)))|number
624 -|(((
616 +)))|(% style="width:221px" %)number
617 +|(% style="width:360px" %)(((
625 625  Boolean
626 626  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
627 627  binary-valued logic: {true, false})
628 -)))|boolean
629 -|(((
621 +)))|(% style="width:221px" %)boolean
622 +|(% style="width:360px" %)(((
630 630  URI
631 631  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
632 -)))|string
633 -|(((
625 +)))|(% style="width:221px" %)string
626 +|(% style="width:360px" %)(((
634 634  Count
635 635  (an integer following a sequential pattern, increasing by 1 for each occurrence)
636 -)))|integer
637 -|(((
629 +)))|(% style="width:221px" %)integer
630 +|(% style="width:360px" %)(((
638 638  InclusiveValueRange
639 639  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
640 -)))|number
641 -|(((
633 +)))|(% style="width:221px" %)number
634 +|(% style="width:360px" %)(((
642 642  ExclusiveValueRange
643 643  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
644 -)))|number
645 -|(((
637 +)))|(% style="width:221px" %)number
638 +|(% style="width:360px" %)(((
646 646  Incremental
647 647  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
648 -)))|number
649 -|(((
641 +)))|(% style="width:221px" %)number
642 +|(% style="width:360px" %)(((
650 650  ObservationalTimePeriod
651 651  (superset of StandardTimePeriod and TimeRange)
652 -)))|time
653 -|(((
645 +)))|(% style="width:221px" %)time
646 +|(% style="width:360px" %)(((
654 654  StandardTimePeriod
655 655  (superset of BasicTimePeriod and ReportingTimePeriod)
656 -)))|time
657 -|(((
649 +)))|(% style="width:221px" %)time
650 +|(% style="width:360px" %)(((
658 658  BasicTimePeriod
659 659  (superset of GregorianTimePeriod and DateTime)
660 -)))|date
661 -|(((
653 +)))|(% style="width:221px" %)date
654 +|(% style="width:360px" %)(((
662 662  GregorianTimePeriod
663 663  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
664 -)))|date
665 -|GregorianYear (YYYY)|date
666 -|GregorianYearMonth / GregorianMonth (YYYY-MM)|date
667 -|GregorianDay (YYYY-MM-DD)|date
668 -|(((
657 +)))|(% style="width:221px" %)date
658 +|(% style="width:360px" %)GregorianYear (YYYY)|(% style="width:221px" %)date
659 +|(% style="width:360px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% style="width:221px" %)date
660 +|(% style="width:360px" %)GregorianDay (YYYY-MM-DD)|(% style="width:221px" %)date
661 +|(% style="width:360px" %)(((
669 669  ReportingTimePeriod
670 670  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
671 -)))|time_period
672 -|(((
664 +)))|(% style="width:221px" %)time_period
665 +|(% style="width:360px" %)(((
673 673  ReportingYear
674 674  (YYYY-A1 – 1 year period)
675 -)))|time_period
676 -|(((
668 +)))|(% style="width:221px" %)time_period
669 +|(% style="width:360px" %)(((
677 677  ReportingSemester
678 678  (YYYY-Ss – 6 month period)
679 -)))|time_period
680 -|(((
672 +)))|(% style="width:221px" %)time_period
673 +|(% style="width:360px" %)(((
681 681  ReportingTrimester
682 682  (YYYY-Tt – 4 month period)
683 -)))|time_period
684 -|(((
676 +)))|(% style="width:221px" %)time_period
677 +|(% style="width:360px" %)(((
685 685  ReportingQuarter
686 686  (YYYY-Qq – 3 month period)
687 -)))|time_period
688 -|(((
680 +)))|(% style="width:221px" %)time_period
681 +|(% style="width:360px" %)(((
689 689  ReportingMonth
690 690  (YYYY-Mmm – 1 month period)
691 -)))|time_period
692 -|ReportingWeek|time_period
693 -| (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
694 -|(((
684 +)))|(% style="width:221px" %)time_period
685 +|(% style="width:360px" %)ReportingWeek|(% style="width:221px" %)time_period
686 +|(% style="width:360px" %) (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% style="width:221px" %)
687 +|(% style="width:360px" %)(((
695 695  ReportingDay
696 696  (YYYY-Dddd – 1 day period)
697 -)))|time_period
698 -|(((
690 +)))|(% style="width:221px" %)time_period
691 +|(% style="width:360px" %)(((
699 699  DateTime
700 700  (YYYY-MM-DDThh:mm:ss)
701 -)))|date
702 -|(((
694 +)))|(% style="width:221px" %)date
695 +|(% style="width:360px" %)(((
703 703  TimeRange
704 704  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
705 -)))|time
706 -|(((
698 +)))|(% style="width:221px" %)time
699 +|(% style="width:360px" %)(((
707 707  Month
708 708  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
709 -)))|string
710 -|(((
702 +)))|(% style="width:221px" %)string
703 +|(% style="width:360px" %)(((
711 711  MonthDay
712 712  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
713 -)))|string
714 -|(((
706 +)))|(% style="width:221px" %)string
707 +|(% style="width:360px" %)(((
715 715  Day
716 716  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
717 -)))|string
718 -|(((
710 +)))|(% style="width:221px" %)string
711 +|(% style="width:360px" %)(((
719 719  Time
720 720  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
721 -)))|string
722 -|(((
714 +)))|(% style="width:221px" %)string
715 +|(% style="width:360px" %)(((
723 723  Duration
724 724  (corresponds to XML Schema xs:duration datatype)
725 -)))|duration
726 -|XHTML|Metadata type – not applicable
727 -|KeyValues|Metadata type – not applicable
728 -|IdentifiableReference|Metadata type – not applicable
729 -|DataSetReference|Metadata type – not applicable
718 +)))|(% style="width:221px" %)duration
719 +|(% style="width:360px" %)XHTML|(% style="width:221px" %)Metadata type – not applicable
720 +|(% style="width:360px" %)KeyValues|(% style="width:221px" %)Metadata type – not applicable
721 +|(% style="width:360px" %)IdentifiableReference|(% style="width:221px" %)Metadata type – not applicable
722 +|(% style="width:360px" %)DataSetReference|(% style="width:221px" %)Metadata type – not applicable
730 730  
731 731  **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
732 732  
... ... @@ -736,84 +736,82 @@
736 736  
737 737  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
738 738  
739 -|(((
740 -VTL basic
741 -scalar type
742 -)))|(((
732 +(% style="width:748.294px" %)
733 +|(% style="width:164px" %)(((
734 +VTL basic scalar type
735 +)))|(% style="width:304px" %)(((
743 743  Default SDMX data type
744 -(BasicComponentDataType
745 -)
746 -)))|Default output format
747 -|String|String|Like XML (xs:string)
748 -|Number|Float|Like XML (xs:float)
749 -|Integer|Integer|Like XML (xs:int)
750 -|Date|DateTime|YYYY-MM-DDT00:00:00Z
751 -|Time|StandardTimePeriod|<date>/<date> (as defined above)
752 -|time_period|(((
737 +(BasicComponentDataType)
738 +)))|(% style="width:277px" %)Default output format
739 +|(% style="width:164px" %)String|(% style="width:304px" %)String|(% style="width:277px" %)Like XML (xs:string)
740 +|(% style="width:164px" %)Number|(% style="width:304px" %)Float|(% style="width:277px" %)Like XML (xs:float)
741 +|(% style="width:164px" %)Integer|(% style="width:304px" %)Integer|(% style="width:277px" %)Like XML (xs:int)
742 +|(% style="width:164px" %)Date|(% style="width:304px" %)DateTime|(% style="width:277px" %)YYYY-MM-DDT00:00:00Z
743 +|(% style="width:164px" %)Time|(% style="width:304px" %)StandardTimePeriod|(% style="width:277px" %)<date>/<date> (as defined above)
744 +|(% style="width:164px" %)time_period|(% style="width:304px" %)(((
753 753  ReportingTimePeriod
754 754  (StandardReportingPeriod)
755 -)))|(((
747 +)))|(% style="width:277px" %)(((
756 756   YYYY-Pppp
757 757  (according to SDMX )
758 758  )))
759 -|Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
760 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
751 +|(% style="width:164px" %)Duration|(% style="width:304px" %)Duration|(% style="width:277px" %)Like XML (xs:duration) PnYnMnDTnHnMnS
752 +|(% style="width:164px" %)Boolean|(% style="width:304px" %)Boolean|(% style="width:277px" %)Like XML (xs:boolean) with the values "true" or "false"
761 761  
762 762  **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
763 763  
764 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
756 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
765 765  
766 -Transformations and Expressions of the SDMX information model).
767 -
768 768  The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table.
769 769  
770 -|(% colspan="2" %)VTL special characters for the formatting masks
771 -|(% colspan="2" %)
772 -|(% colspan="2" %)Number
773 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
774 -|E|one numeric digit (for the exponent of the scientific notation)
775 -|. (dot)|possible separator between the integer and the decimal parts.
776 -|, (comma)|possible separator between the integer and the decimal parts.
777 -| |
778 -|(% colspan="2" %)Time and duration
779 -|C|century
780 -|Y|year
781 -|S|semester
782 -|Q|quarter
783 -|M|month
784 -|W|week
785 -|D|day
786 -|h|hour digit (by default on 24 hours)
787 -|M|minute
788 -|S|second
789 -|D|decimal of second
790 -|P|period indicator (representation in one digit for the duration)
791 -|P|number of the periods specified in the period indicator
792 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm")
793 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January)
794 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday)
795 -|Month|lowercase textual representation of the month (e.g., january)
796 -|Day|lowercase textual representation of the month (e.g., monday)
797 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January)
798 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
799 -| |
800 -|(% colspan="2" %)String
801 -|X|any string character
802 -|Z|any string character from "A" to "z"
803 -|9|any string character from "0" to "9"
804 -| |
805 -|(% colspan="2" %)Boolean
806 -|B|Boolean using "true" for True and "false" for False
807 -|1|Boolean using "1" for True and "0" for False
808 -|0|Boolean using "0" for True and "1" for False
809 -| |
810 -|(% colspan="2" %)Other qualifiers
811 -|*|an arbitrary number of digits (of the preceding type)
812 -|+|at least one digit (of the preceding type)
813 -|( )|optional digits (specified within the brackets)
814 -|\|prefix for the special characters that must appear in the mask
815 -|N|fixed number of digits used in the preceding textual representation of the month or the day
816 -| |
760 +(% style="width:717.294px" %)
761 +|(% colspan="2" style="width:714px" %)VTL special characters for the formatting masks
762 +|(% colspan="2" style="width:714px" %)
763 +|(% colspan="2" style="width:714px" %)Number
764 +|(% style="width:122px" %)D|(% style="width:591px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
765 +|(% style="width:122px" %)E|(% style="width:591px" %)one numeric digit (for the exponent of the scientific notation)
766 +|(% style="width:122px" %). (dot)|(% style="width:591px" %)possible separator between the integer and the decimal parts.
767 +|(% style="width:122px" %), (comma)|(% style="width:591px" %)possible separator between the integer and the decimal parts.
768 +|(% style="width:122px" %) |(% style="width:591px" %)
769 +|(% colspan="2" style="width:714px" %)Time and duration
770 +|(% style="width:122px" %)C|(% style="width:591px" %)century
771 +|(% style="width:122px" %)Y|(% style="width:591px" %)year
772 +|(% style="width:122px" %)S|(% style="width:591px" %)semester
773 +|(% style="width:122px" %)Q|(% style="width:591px" %)quarter
774 +|(% style="width:122px" %)M|(% style="width:591px" %)month
775 +|(% style="width:122px" %)W|(% style="width:591px" %)week
776 +|(% style="width:122px" %)D|(% style="width:591px" %)day
777 +|(% style="width:122px" %)h|(% style="width:591px" %)hour digit (by default on 24 hours)
778 +|(% style="width:122px" %)M|(% style="width:591px" %)minute
779 +|(% style="width:122px" %)S|(% style="width:591px" %)second
780 +|(% style="width:122px" %)D|(% style="width:591px" %)decimal of second
781 +|(% style="width:122px" %)P|(% style="width:591px" %)period indicator (representation in one digit for the duration)
782 +|(% style="width:122px" %)P|(% style="width:591px" %)number of the periods specified in the period indicator
783 +|(% style="width:122px" %)AM/PM|(% style="width:591px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm")
784 +|(% style="width:122px" %)MONTH|(% style="width:591px" %)uppercase textual representation of the month (e.g., JANUARY for January)
785 +|(% style="width:122px" %)DAY|(% style="width:591px" %)uppercase textual representation of the day (e.g., MONDAY for Monday)
786 +|(% style="width:122px" %)Month|(% style="width:591px" %)lowercase textual representation of the month (e.g., january)
787 +|(% style="width:122px" %)Day|(% style="width:591px" %)lowercase textual representation of the month (e.g., monday)
788 +|(% style="width:122px" %)Month|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the month (e.g., January)
789 +|(% style="width:122px" %)Day|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
790 +|(% style="width:122px" %) |(% style="width:591px" %)
791 +|(% colspan="2" style="width:714px" %)String
792 +|(% style="width:122px" %)X|(% style="width:591px" %)any string character
793 +|(% style="width:122px" %)Z|(% style="width:591px" %)any string character from "A" to "z"
794 +|(% style="width:122px" %)9|(% style="width:591px" %)any string character from "0" to "9"
795 +|(% style="width:122px" %) |(% style="width:591px" %)
796 +|(% colspan="2" style="width:714px" %)Boolean
797 +|(% style="width:122px" %)B|(% style="width:591px" %)Boolean using "true" for True and "false" for False
798 +|(% style="width:122px" %)1|(% style="width:591px" %)Boolean using "1" for True and "0" for False
799 +|(% style="width:122px" %)0|(% style="width:591px" %)Boolean using "0" for True and "1" for False
800 +|(% style="width:122px" %) |(% style="width:591px" %)
801 +|(% colspan="2" style="width:714px" %)Other qualifiers
802 +|(% style="width:122px" %)*|(% style="width:591px" %)an arbitrary number of digits (of the preceding type)
803 +|(% style="width:122px" %)+|(% style="width:591px" %)at least one digit (of the preceding type)
804 +|(% style="width:122px" %)( )|(% style="width:591px" %)optional digits (specified within the brackets)
805 +|(% style="width:122px" %)\|(% style="width:591px" %)prefix for the special characters that must appear in the mask
806 +|(% style="width:122px" %)N|(% style="width:591px" %)fixed number of digits used in the preceding textual representation of the month or the day
807 +|(% style="width:122px" %) |(% style="width:591px" %)
817 817  
818 818  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
819 819  
1750070288958-132.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +45.9 KB
Content
1750070310572-584.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content