Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -80,9 +80,9 @@ 80 80 81 81 For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as{{footnote}}Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.{{/footnote}}: 82 82 83 -> (%style="font-size:16px" %)'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-84 -> (%style="font-size:16px" %)'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +85 -> (%style="font-size:16px" %)'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'83 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <- 84 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' + 85 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 86 86 87 87 === 12.2.3 Abbreviation of the URN === 88 88 ... ... @@ -97,7 +97,8 @@ 97 97 ** "codelist" for the class Codelist. 98 98 * The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator{{footnote}}For the syntax of the VTL operators see the VTL Reference Manual{{/footnote}}, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}In case the invoked artefact is a VTL component, which can be invoked only within the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name (e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced from the data structure of the SDMX Dataflow, which the component belongs to.{{/footnote}}. 99 99 * If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency{{footnote}}If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is considered different even if only part of the composite name is different (for example AgencyA.Dept1.Unit3 is a different Agency than the previous one). Moreover the agency-id cannot be omitted in part (i.e., if a TransformationScheme owned by AgencyA.Dept1.Unit2 references an artefact coming from AgencyA.Dept1.Unit3, the specification of the agency-id becomes mandatory and must be complete, without omitting the possibly equal parts like AgencyA.Dept1){{/footnote}}. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements). 100 -* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 100 +* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: 101 +** if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 101 101 ** if the referenced artefact is a Dimension, TimeDimension, Measure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions; 102 102 ** if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class, the maintained object is the conceptScheme-id and cannot be omitted; 103 103 ** if the referenced artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the codelist-id and obviously cannot be omitted. ... ... @@ -109,51 +109,47 @@ 109 109 110 110 For example, the full formulation that uses the complete URN shown at the end of the previous paragraph: 111 111 112 -'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' := 113 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' := 114 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' + 115 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 113 113 114 -'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' + 115 - 116 -'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 117 - 118 118 by omitting all the non-essential parts would become simply: 119 119 120 -DFR := DF1 + DF2 119 +> DFR : = DF1 + DF2 121 121 122 122 The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}: 123 123 124 -'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)' 123 +> 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)' 125 125 126 126 if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^: 127 127 128 -CL_FREQ 127 +> CL_FREQ 129 129 130 130 As for the references to the components, it can be enough to specify the componentId, given that the dataStructure-Id can be omitted. An example of non-abbreviated reference, if the data structure is DST1 and the component is SECTOR, is the following: 131 131 132 -'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S 131 +> 'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S ECTOR' 133 133 134 -ECTOR' 135 - 136 136 The corresponding fully abbreviated reference, if made from a TransformationScheme belonging to AG, would become simply: 137 137 138 -SECTOR 135 +> SECTOR 139 139 140 140 For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as{{footnote}}The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR is called SEC{{/footnote}}: 141 141 142 -'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC] 139 +> 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC] 143 143 144 144 In the references to the Concepts, which can exist for example in the definition of the VTL Rulesets, at least the conceptScheme-id and the concept-id must be specified. 145 145 146 146 An example of non-abbreviated reference, if the conceptScheme-id is CS1 and the concept-id is SECTOR, is the following: 147 147 148 -'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR' 145 +> 'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR' 149 149 150 150 The corresponding fully abbreviated reference, if made from a RulesetScheme belonging to AG, would become simply: 151 151 152 -CS1(1.0.0).SECTOR 149 +> CS1(1.0.0).SECTOR 153 153 154 154 The Codes and in general all the Values can be written without any other specification, for example, the transformation to check if the values of the measures of the Dataflow DF1 are between 0 and 25000 can be written like follows: 155 155 156 -'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 ) 153 +> 'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 ) 157 157 158 158 The artefact (Component, Concept, Codelist …) which the Values are referred to can be deduced from the context in which the reference is made, taking also into account the VTL syntax. In the Transformation above, for example, the values 0 and 2500 are compared to the values of the measures of DF1(1.0.0). 159 159 ... ... @@ -201,7 +201,7 @@ 201 201 202 202 The possible mapping options are described in more detail in the following sections. 203 203 204 -=== 12.3. 2Mapping from SDMX to VTL data structures ===201 +=== 12.3.3 Mapping from SDMX to VTL data structures === 205 205 206 206 ==== 12.3.3.1 Basic Mapping ==== 207 207 ... ... @@ -209,11 +209,12 @@ 209 209 210 210 When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 211 211 212 -|**SDMX**|**VTL** 213 -|Dimension|(Simple) Identifier 214 -|TimeDimension|(Time) Identifier 215 -|Measure|Measure 216 -|DataAttribute|Attribute 209 +(% style="width:468.294px" %) 210 +|(% style="width:196px" %)**SDMX**|(% style="width:269px" %)**VTL** 211 +|(% style="width:196px" %)Dimension|(% style="width:269px" %)(Simple) Identifier 212 +|(% style="width:196px" %)TimeDimension|(% style="width:269px" %)(Time) Identifier 213 +|(% style="width:196px" %)Measure|(% style="width:269px" %)Measure 214 +|(% style="width:196px" %)DataAttribute|(% style="width:269px" %)Attribute 217 217 218 218 The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set). 219 219 ... ... @@ -223,10 +223,8 @@ 223 223 224 224 An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD. 225 225 226 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the 224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}. 227 227 228 -MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}. 229 - 230 230 Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension. 231 231 232 232 If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph). ... ... @@ -239,16 +239,18 @@ 239 239 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 240 240 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 241 241 ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 242 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 239 +** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 243 243 244 244 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 245 245 246 -|**SDMX**|**VTL** 247 -|Dimension|(Simple) Identifier 248 -|TimeDimension|(Time) Identifier 249 -|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension 250 -|DataAttribute not depending on the MeasureDimension|Attribute 251 -|DataAttribute depending on the MeasureDimension|((( 243 +(% style="width:739.294px" %) 244 +|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL** 245 +|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier 246 +|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier 247 +|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension 248 +|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute 249 +|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)((( 252 252 One Attribute for each Code of the 253 253 SDMX MeasureDimension 254 254 ))) ... ... @@ -258,19 +258,14 @@ 258 258 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 259 259 260 260 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 261 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 262 - 263 -Identifiers, (time) Identifier and Attributes. 264 - 259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 265 265 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 266 266 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 267 267 268 268 ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ==== 269 269 270 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 271 271 272 -Attributes. 273 - 274 274 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. 275 275 276 276 Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures. ... ... @@ -287,11 +287,12 @@ 287 287 288 288 Mapping table: 289 289 290 -|**VTL**|**SDMX** 291 -|(Simple) Identifier|Dimension 292 -|(Time) Identifier|TimeDimension 293 -|Measure|Measure 294 -|Attribute|DataAttribute 283 +(% style="width:470.294px" %) 284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX** 285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension 286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension 287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure 288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute 295 295 296 296 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 297 297 ... ... @@ -319,11 +319,12 @@ 319 319 320 320 The summary mapping table of the **unpivot** mapping method is the following: 321 321 322 -|**VTL**|**SDMX** 323 -|(Simple) Identifier|Dimension 324 -|(Time) Identifier|TimeDimension 325 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 326 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 316 +(% style="width:638.294px" %) 317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX** 318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension 319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension 320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 327 327 328 328 At observation / data point level: 329 329 ... ... @@ -345,12 +345,13 @@ 345 345 346 346 The mapping table is the following: 347 347 348 -|VTL|SDMX 349 -|(Simple) Identifier|Dimension 350 -|(Time) Identifier|TimeDimension 351 -|Some Measures|Measure 352 -|Other Measures|DataAttribute 353 -|Attribute|DataAttribute 343 +(% style="width:467.294px" %) 344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX 345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension 346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension 347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure 348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute 349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute 354 354 355 355 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 356 356 ... ... @@ -388,11 +388,11 @@ 388 388 389 389 Therefore, the generic name of this kind of VTL datasets would be: 390 390 391 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 392 392 393 393 Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be: 394 394 395 -‘DF(1.0.0)/POPULATION.USA’ 391 +> ‘DF(1.0.0)/POPULATION.USA’ 396 396 397 397 In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA. 398 398 ... ... @@ -406,26 +406,22 @@ 406 406 407 407 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 408 408 409 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 410 410 411 -basic, pivot …). 412 - 413 413 In the example above, for all the datasets of the kind 414 414 415 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 416 416 417 417 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 418 418 419 -‘DF1(1.0.0)/POPULATION.USA’ := 413 +> ‘DF1(1.0.0)/POPULATION.USA’ := 414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 415 +> 416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ := 417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 418 +> 419 +> … … … 420 420 421 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 422 - 423 -‘DF1(1.0.0)/POPULATION.CANADA’ := 424 - 425 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 426 - 427 -… … … 428 - 429 429 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} 430 430 431 431 In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. ... ... @@ -434,10 +434,9 @@ 434 434 435 435 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 436 436 437 -‘DF1(1.0.0)/POPULATION.’ := 429 +> ‘DF1(1.0.0)/POPULATION.’ := 430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 438 438 439 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 440 - 441 441 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 442 442 443 443 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations. ... ... @@ -455,41 +455,38 @@ 455 455 456 456 The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}} 457 457 458 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 459 459 460 460 Some examples follow, for some specific values of INDICATOR and COUNTRY: 461 461 462 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 463 -… … … 453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 454 +> … … … 455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 457 +> … … … 464 464 465 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 466 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 467 -… … … 468 - 469 469 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 470 470 471 471 VTL dataset INDICATOR value COUNTRY value 472 472 473 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 474 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 475 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 476 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 465 +> ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 466 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 467 +> … … … 477 477 478 -… … … 479 - 480 480 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 481 481 482 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 483 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 484 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 485 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 486 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 487 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 488 -DF2bis_GDPPERCAPITA_CANADA’, 489 -… , 490 -DF2bis_POPGROWTH_USA’, 491 -DF2bis_POPGROWTH_CANADA’ 492 -…); 471 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 472 +> DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 473 +> DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 474 +> DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 475 +> DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 476 +> DF2bis_GDPPERCAPITA_CANADA’, 477 +> … , 478 +> DF2bis_POPGROWTH_USA’, 479 +> DF2bis_POPGROWTH_CANADA’ 480 +> …); 493 493 494 494 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 495 495 ... ... @@ -501,25 +501,26 @@ 501 501 502 502 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 503 503 504 -|VTL|SDMX 505 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 506 -|**Represented Variable**|**Concept** with a definite Representation 507 -|**Value Domain**|((( 492 +(% style="width:706.294px" %) 493 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX 494 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 495 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation 496 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)((( 508 508 **Representation** (see the Structure 509 509 Pattern in the Base Package) 510 510 ))) 511 -|**Enumerated Value Domain / Code List**|**Codelist** 512 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 513 -|**Described Value Domain**|((( 500 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist** 501 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 502 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)((( 514 514 non-enumerated** Representation** 515 515 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 516 516 ))) 517 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 518 -| |to a valid **value **(for non-enumerated** **Representations) 519 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 520 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 521 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 522 -|**Set list**|This abstraction does not exist in SDMX 506 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 507 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations) 508 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 509 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 510 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 511 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX 523 523 524 524 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 525 525 ... ... @@ -527,8 +527,10 @@ 527 527 528 528 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 529 529 530 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.519 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 531 531 521 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 522 + 532 532 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 533 533 534 534 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -543,8 +543,9 @@ 543 543 544 544 The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual: 545 545 546 -[[image:1750067055028-964.png]] 547 547 538 +[[image:1750070288958-132.png]] 539 + 548 548 **Figure 22 – VTL Data Types** 549 549 550 550 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. ... ... @@ -551,6 +551,8 @@ 551 551 552 552 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 553 553 546 +[[image:1750070310572-584.png]] 547 + 554 554 **Figure 23 – VTL Basic Scalar Types** 555 555 556 556 === 12.4.2 VTL basic scalar types and SDMX data types === ... ... @@ -575,158 +575,157 @@ 575 575 576 576 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 577 577 578 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 579 -|((( 572 +(% style="width:583.294px" %) 573 +|(% style="width:360px" %)SDMX data type (BasicComponentDataType)|(% style="width:221px" %)Default VTL basic scalar type 574 +|(% style="width:360px" %)((( 580 580 String 581 581 (string allowing any character) 582 -)))|string 583 -|((( 584 -Alpha 585 - 577 +)))|(% style="width:221px" %)string 578 +|(% style="width:360px" %)((( 579 +Alpha 586 586 (string which only allows A-z) 587 -)))|string 588 -|((( 581 +)))|(% style="width:221px" %)string 582 +|(% style="width:360px" %)((( 589 589 AlphaNumeric 590 590 (string which only allows A-z and 0-9) 591 -)))|string 592 -|((( 585 +)))|(% style="width:221px" %)string 586 +|(% style="width:360px" %)((( 593 593 Numeric 594 - 595 595 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 596 -)))|string 597 -|((( 589 +)))|(% style="width:221px" %)string 590 +|(% style="width:360px" %)((( 598 598 BigInteger 599 599 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 600 -)))|integer 601 -|((( 593 +)))|(% style="width:221px" %)integer 594 +|(% style="width:360px" %)((( 602 602 Integer 603 603 (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 604 604 (inclusive)) 605 -)))|integer 606 -|((( 598 +)))|(% style="width:221px" %)integer 599 +|(% style="width:360px" %)((( 607 607 Long 608 608 (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 609 609 +9223372036854775807 (inclusive)) 610 -)))|integer 611 -|((( 603 +)))|(% style="width:221px" %)integer 604 +|(% style="width:360px" %)((( 612 612 Short 613 613 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 614 -)))|integer 615 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 616 -|((( 607 +)))|(% style="width:221px" %)integer 608 +|(% style="width:360px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:221px" %)number 609 +|(% style="width:360px" %)((( 617 617 Float 618 618 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 619 -)))|number 620 -|((( 612 +)))|(% style="width:221px" %)number 613 +|(% style="width:360px" %)((( 621 621 Double 622 622 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 623 -)))|number 624 -|((( 616 +)))|(% style="width:221px" %)number 617 +|(% style="width:360px" %)((( 625 625 Boolean 626 626 (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 627 627 binary-valued logic: {true, false}) 628 -)))|boolean 629 -|((( 621 +)))|(% style="width:221px" %)boolean 622 +|(% style="width:360px" %)((( 630 630 URI 631 631 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 632 -)))|string 633 -|((( 625 +)))|(% style="width:221px" %)string 626 +|(% style="width:360px" %)((( 634 634 Count 635 635 (an integer following a sequential pattern, increasing by 1 for each occurrence) 636 -)))|integer 637 -|((( 629 +)))|(% style="width:221px" %)integer 630 +|(% style="width:360px" %)((( 638 638 InclusiveValueRange 639 639 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 640 -)))|number 641 -|((( 633 +)))|(% style="width:221px" %)number 634 +|(% style="width:360px" %)((( 642 642 ExclusiveValueRange 643 643 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 644 -)))|number 645 -|((( 637 +)))|(% style="width:221px" %)number 638 +|(% style="width:360px" %)((( 646 646 Incremental 647 647 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 648 -)))|number 649 -|((( 641 +)))|(% style="width:221px" %)number 642 +|(% style="width:360px" %)((( 650 650 ObservationalTimePeriod 651 651 (superset of StandardTimePeriod and TimeRange) 652 -)))|time 653 -|((( 645 +)))|(% style="width:221px" %)time 646 +|(% style="width:360px" %)((( 654 654 StandardTimePeriod 655 655 (superset of BasicTimePeriod and ReportingTimePeriod) 656 -)))|time 657 -|((( 649 +)))|(% style="width:221px" %)time 650 +|(% style="width:360px" %)((( 658 658 BasicTimePeriod 659 659 (superset of GregorianTimePeriod and DateTime) 660 -)))|date 661 -|((( 653 +)))|(% style="width:221px" %)date 654 +|(% style="width:360px" %)((( 662 662 GregorianTimePeriod 663 663 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 664 -)))|date 665 -|GregorianYear (YYYY)|date 666 -|GregorianYearMonth / GregorianMonth (YYYY-MM)|date 667 -|GregorianDay (YYYY-MM-DD)|date 668 -|((( 657 +)))|(% style="width:221px" %)date 658 +|(% style="width:360px" %)GregorianYear (YYYY)|(% style="width:221px" %)date 659 +|(% style="width:360px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% style="width:221px" %)date 660 +|(% style="width:360px" %)GregorianDay (YYYY-MM-DD)|(% style="width:221px" %)date 661 +|(% style="width:360px" %)((( 669 669 ReportingTimePeriod 670 670 (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 671 -)))|time_period 672 -|((( 664 +)))|(% style="width:221px" %)time_period 665 +|(% style="width:360px" %)((( 673 673 ReportingYear 674 674 (YYYY-A1 – 1 year period) 675 -)))|time_period 676 -|((( 668 +)))|(% style="width:221px" %)time_period 669 +|(% style="width:360px" %)((( 677 677 ReportingSemester 678 678 (YYYY-Ss – 6 month period) 679 -)))|time_period 680 -|((( 672 +)))|(% style="width:221px" %)time_period 673 +|(% style="width:360px" %)((( 681 681 ReportingTrimester 682 682 (YYYY-Tt – 4 month period) 683 -)))|time_period 684 -|((( 676 +)))|(% style="width:221px" %)time_period 677 +|(% style="width:360px" %)((( 685 685 ReportingQuarter 686 686 (YYYY-Qq – 3 month period) 687 -)))|time_period 688 -|((( 680 +)))|(% style="width:221px" %)time_period 681 +|(% style="width:360px" %)((( 689 689 ReportingMonth 690 690 (YYYY-Mmm – 1 month period) 691 -)))|time_period 692 -|ReportingWeek|time_period 693 -| (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)| 694 -|((( 684 +)))|(% style="width:221px" %)time_period 685 +|(% style="width:360px" %)ReportingWeek|(% style="width:221px" %)time_period 686 +|(% style="width:360px" %) (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% style="width:221px" %) 687 +|(% style="width:360px" %)((( 695 695 ReportingDay 696 696 (YYYY-Dddd – 1 day period) 697 -)))|time_period 698 -|((( 690 +)))|(% style="width:221px" %)time_period 691 +|(% style="width:360px" %)((( 699 699 DateTime 700 700 (YYYY-MM-DDThh:mm:ss) 701 -)))|date 702 -|((( 694 +)))|(% style="width:221px" %)date 695 +|(% style="width:360px" %)((( 703 703 TimeRange 704 704 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 705 -)))|time 706 -|((( 698 +)))|(% style="width:221px" %)time 699 +|(% style="width:360px" %)((( 707 707 Month 708 708 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 709 -)))|string 710 -|((( 702 +)))|(% style="width:221px" %)string 703 +|(% style="width:360px" %)((( 711 711 MonthDay 712 712 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 713 -)))|string 714 -|((( 706 +)))|(% style="width:221px" %)string 707 +|(% style="width:360px" %)((( 715 715 Day 716 716 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 717 -)))|string 718 -|((( 710 +)))|(% style="width:221px" %)string 711 +|(% style="width:360px" %)((( 719 719 Time 720 720 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 721 -)))|string 722 -|((( 714 +)))|(% style="width:221px" %)string 715 +|(% style="width:360px" %)((( 723 723 Duration 724 724 (corresponds to XML Schema xs:duration datatype) 725 -)))|duration 726 -|XHTML|Metadata type – not applicable 727 -|KeyValues|Metadata type – not applicable 728 -|IdentifiableReference|Metadata type – not applicable 729 -|DataSetReference|Metadata type – not applicable 718 +)))|(% style="width:221px" %)duration 719 +|(% style="width:360px" %)XHTML|(% style="width:221px" %)Metadata type – not applicable 720 +|(% style="width:360px" %)KeyValues|(% style="width:221px" %)Metadata type – not applicable 721 +|(% style="width:360px" %)IdentifiableReference|(% style="width:221px" %)Metadata type – not applicable 722 +|(% style="width:360px" %)DataSetReference|(% style="width:221px" %)Metadata type – not applicable 730 730 731 731 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 732 732 ... ... @@ -736,84 +736,82 @@ 736 736 737 737 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 738 738 739 - |(((740 - VTLbasic741 -scalar type 742 -)))|((( 732 +(% style="width:748.294px" %) 733 +|(% style="width:164px" %)((( 734 +VTL basic scalar type 735 +)))|(% style="width:304px" %)((( 743 743 Default SDMX data type 744 -(BasicComponentDataType 745 -) 746 -)))|Default output format 747 -|String|String|Like XML (xs:string) 748 -|Number|Float|Like XML (xs:float) 749 -|Integer|Integer|Like XML (xs:int) 750 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 751 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 752 -|time_period|((( 737 +(BasicComponentDataType) 738 +)))|(% style="width:277px" %)Default output format 739 +|(% style="width:164px" %)String|(% style="width:304px" %)String|(% style="width:277px" %)Like XML (xs:string) 740 +|(% style="width:164px" %)Number|(% style="width:304px" %)Float|(% style="width:277px" %)Like XML (xs:float) 741 +|(% style="width:164px" %)Integer|(% style="width:304px" %)Integer|(% style="width:277px" %)Like XML (xs:int) 742 +|(% style="width:164px" %)Date|(% style="width:304px" %)DateTime|(% style="width:277px" %)YYYY-MM-DDT00:00:00Z 743 +|(% style="width:164px" %)Time|(% style="width:304px" %)StandardTimePeriod|(% style="width:277px" %)<date>/<date> (as defined above) 744 +|(% style="width:164px" %)time_period|(% style="width:304px" %)((( 753 753 ReportingTimePeriod 754 754 (StandardReportingPeriod) 755 -)))|((( 747 +)))|(% style="width:277px" %)((( 756 756 YYYY-Pppp 757 757 (according to SDMX ) 758 758 ))) 759 -|Duration|Duration|Like XML(xs:duration) PnYnMnDTnHnMnS760 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 751 +|(% style="width:164px" %)Duration|(% style="width:304px" %)Duration|(% style="width:277px" %)Like XML (xs:duration) PnYnMnDTnHnMnS 752 +|(% style="width:164px" %)Boolean|(% style="width:304px" %)Boolean|(% style="width:277px" %)Like XML (xs:boolean) with the values "true" or "false" 761 761 762 762 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 763 763 764 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section 756 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 765 765 766 -Transformations and Expressions of the SDMX information model). 767 - 768 768 The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table. 769 769 770 -|(% colspan="2" %)VTL special characters for the formatting masks 771 -|(% colspan="2" %) 772 -|(% colspan="2" %)Number 773 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 774 -|E|one numeric digit (for the exponent of the scientific notation) 775 -|. (dot)|possible separator between the integer and the decimal parts. 776 -|, (comma)|possible separator between the integer and the decimal parts. 777 -| | 778 -|(% colspan="2" %)Time and duration 779 -|C|century 780 -|Y|year 781 -|S|semester 782 -|Q|quarter 783 -|M|month 784 -|W|week 785 -|D|day 786 -|h|hour digit (by default on 24 hours) 787 -|M|minute 788 -|S|second 789 -|D|decimal of second 790 -|P|period indicator (representation in one digit for the duration) 791 -|P|number of the periods specified in the period indicator 792 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm") 793 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January) 794 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday) 795 -|Month|lowercase textual representation of the month (e.g., january) 796 -|Day|lowercase textual representation of the month (e.g., monday) 797 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January) 798 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 799 -| | 800 -|(% colspan="2" %)String 801 -|X|any string character 802 -|Z|any string character from "A" to "z" 803 -|9|any string character from "0" to "9" 804 -| | 805 -|(% colspan="2" %)Boolean 806 -|B|Boolean using "true" for True and "false" for False 807 -|1|Boolean using "1" for True and "0" for False 808 -|0|Boolean using "0" for True and "1" for False 809 -| | 810 -|(% colspan="2" %)Other qualifiers 811 -|*|an arbitrary number of digits (of the preceding type) 812 -|+|at least one digit (of the preceding type) 813 -|( )|optional digits (specified within the brackets) 814 -|\|prefix for the special characters that must appear in the mask 815 -|N|fixed number of digits used in the preceding textual representation of the month or the day 816 -| | 760 +(% style="width:717.294px" %) 761 +|(% colspan="2" style="width:714px" %)VTL special characters for the formatting masks 762 +|(% colspan="2" style="width:714px" %) 763 +|(% colspan="2" style="width:714px" %)Number 764 +|(% style="width:122px" %)D|(% style="width:591px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 765 +|(% style="width:122px" %)E|(% style="width:591px" %)one numeric digit (for the exponent of the scientific notation) 766 +|(% style="width:122px" %). (dot)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 767 +|(% style="width:122px" %), (comma)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 768 +|(% style="width:122px" %) |(% style="width:591px" %) 769 +|(% colspan="2" style="width:714px" %)Time and duration 770 +|(% style="width:122px" %)C|(% style="width:591px" %)century 771 +|(% style="width:122px" %)Y|(% style="width:591px" %)year 772 +|(% style="width:122px" %)S|(% style="width:591px" %)semester 773 +|(% style="width:122px" %)Q|(% style="width:591px" %)quarter 774 +|(% style="width:122px" %)M|(% style="width:591px" %)month 775 +|(% style="width:122px" %)W|(% style="width:591px" %)week 776 +|(% style="width:122px" %)D|(% style="width:591px" %)day 777 +|(% style="width:122px" %)h|(% style="width:591px" %)hour digit (by default on 24 hours) 778 +|(% style="width:122px" %)M|(% style="width:591px" %)minute 779 +|(% style="width:122px" %)S|(% style="width:591px" %)second 780 +|(% style="width:122px" %)D|(% style="width:591px" %)decimal of second 781 +|(% style="width:122px" %)P|(% style="width:591px" %)period indicator (representation in one digit for the duration) 782 +|(% style="width:122px" %)P|(% style="width:591px" %)number of the periods specified in the period indicator 783 +|(% style="width:122px" %)AM/PM|(% style="width:591px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm") 784 +|(% style="width:122px" %)MONTH|(% style="width:591px" %)uppercase textual representation of the month (e.g., JANUARY for January) 785 +|(% style="width:122px" %)DAY|(% style="width:591px" %)uppercase textual representation of the day (e.g., MONDAY for Monday) 786 +|(% style="width:122px" %)Month|(% style="width:591px" %)lowercase textual representation of the month (e.g., january) 787 +|(% style="width:122px" %)Day|(% style="width:591px" %)lowercase textual representation of the month (e.g., monday) 788 +|(% style="width:122px" %)Month|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the month (e.g., January) 789 +|(% style="width:122px" %)Day|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 790 +|(% style="width:122px" %) |(% style="width:591px" %) 791 +|(% colspan="2" style="width:714px" %)String 792 +|(% style="width:122px" %)X|(% style="width:591px" %)any string character 793 +|(% style="width:122px" %)Z|(% style="width:591px" %)any string character from "A" to "z" 794 +|(% style="width:122px" %)9|(% style="width:591px" %)any string character from "0" to "9" 795 +|(% style="width:122px" %) |(% style="width:591px" %) 796 +|(% colspan="2" style="width:714px" %)Boolean 797 +|(% style="width:122px" %)B|(% style="width:591px" %)Boolean using "true" for True and "false" for False 798 +|(% style="width:122px" %)1|(% style="width:591px" %)Boolean using "1" for True and "0" for False 799 +|(% style="width:122px" %)0|(% style="width:591px" %)Boolean using "0" for True and "1" for False 800 +|(% style="width:122px" %) |(% style="width:591px" %) 801 +|(% colspan="2" style="width:714px" %)Other qualifiers 802 +|(% style="width:122px" %)*|(% style="width:591px" %)an arbitrary number of digits (of the preceding type) 803 +|(% style="width:122px" %)+|(% style="width:591px" %)at least one digit (of the preceding type) 804 +|(% style="width:122px" %)( )|(% style="width:591px" %)optional digits (specified within the brackets) 805 +|(% style="width:122px" %)\|(% style="width:591px" %)prefix for the special characters that must appear in the mask 806 +|(% style="width:122px" %)N|(% style="width:591px" %)fixed number of digits used in the preceding textual representation of the month or the day 807 +|(% style="width:122px" %) |(% style="width:591px" %) 817 817 818 818 The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 819 819
- 1750070288958-132.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.9 KB - Content
- 1750070310572-584.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content