Last modified by Artur on 2025/09/10 11:19

From version 1.17
edited by Helena
on 2025/06/16 13:20
Change comment: There is no comment for this version
To version 1.12
edited by Helena
on 2025/06/16 13:10
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,7 +19,6 @@
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
22 -
23 23  === 12.2.1 Introduction ===
24 24  
25 25  The VTL can manipulate SDMX artefacts (or objects) by referencing them through predefined conventional names (aliases).
... ... @@ -49,8 +49,10 @@
49 49  
50 50  The generic structure of the URN is the following:
51 51  
52 -SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id (maintainedobject-version).*container-object-id.object-id
51 +SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id
53 53  
53 +(maintainedobject-version).*container-object-id.object-id
54 +
54 54  The **SDMXprefix** is "urn:sdmx:org", always the same for all SDMX artefacts.
55 55  
56 56  The SDMX-IM-package-name** **is the concatenation of the string** **"sdmx.infomodel." with the package-name, which the artefact belongs to. For example, for referencing a Dataflow the SDMX-IM-package-name is "sdmx.infomodel.datastructure", because the class Dataflow belongs to the package "datastructure".
... ... @@ -71,19 +71,24 @@
71 71  
72 72  The maintainedobject-version is the version, according to the SDMX versioning rules, of the maintained object which the artefact belongs to (for example, possible versions might be 1.0, 2.3, 1.0.0, 2.1.0 or 3.1.2).
73 73  
74 -The container-object-id does not apply to the classes that can be referenced in VTL Transformations, therefore is not present in their URN.
75 +The container-object-id does not apply to the classes that can be referenced in VTL Transformations, therefore is not present in their URN
75 75  
76 76  The object-id is the name of the non-maintainable artefact (when the artefact is maintainable its name is already specified as the maintainedobject-id, see above), in particular it has to be specified:
77 77  
78 -* if the artefact is a Dimension, TimeDimension, Measure or DataAttribute (the object-id is the name of one of the artefacts above, which are data structure components)
79 +* if the artefact is a Dimension, TimeDimension, Measure or
80 +
81 +DataAttribute (the object-id is the name of one of the artefacts above, which are data structure components)
82 +
79 79  * if the artefact is a Concept (the object-id is the name of the Concept)
80 80  
81 81  For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as{{footnote}}Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.{{/footnote}}:
82 82  
83 ->(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
84 ->(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
85 ->(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
87 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
86 86  
89 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
90 +
91 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
92 +
87 87  === 12.2.3 Abbreviation of the URN ===
88 88  
89 89  The complete formulation of the URN described above is exhaustive but verbose, even for very simple statements. In order to reduce the verbosity through a simplified identifier and make the work of transformation definers easier, proper abbreviations of the URN are possible. Using this approach, the referenced artefacts remain intelligible in the VTL code by a human reader.
... ... @@ -92,13 +92,10 @@
92 92  
93 93  * The SDMXprefix can be omitted for all the SDMX objects, because it is a prefixed string (urn:sdmx:org), always the same for SDMX objects.
94 94  * The SDMX-IM-package-name** **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is:
95 -** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute,
96 -** "conceptscheme" for the class Concept,
97 -** "codelist" for the class Codelist.
101 +** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute, o "conceptscheme" for the class Concept, o "codelist" for the class Codelist.
98 98  * The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator{{footnote}}For the syntax of the VTL operators see the VTL Reference Manual{{/footnote}}, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}In case the invoked artefact is a VTL component, which can be invoked only within the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name (e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced from the data structure of the SDMX Dataflow, which the component belongs to.{{/footnote}}.
99 99  * If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency{{footnote}}If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is considered different even if only part of the composite name is different (for example AgencyA.Dept1.Unit3 is a different Agency than the previous one). Moreover the agency-id cannot be omitted in part (i.e., if a TransformationScheme owned by AgencyA.Dept1.Unit2 references an artefact coming from AgencyA.Dept1.Unit3, the specification of the agency-id becomes mandatory and must be complete, without omitting the possibly equal parts like AgencyA.Dept1){{/footnote}}. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements).
100 -* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted:
101 -** if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
104 +* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
102 102  ** if the referenced artefact is a Dimension, TimeDimension, Measure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions;
103 103  ** if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class, the maintained object is the conceptScheme-id and cannot be omitted;
104 104  ** if the referenced artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the codelist-id and obviously cannot be omitted.
... ... @@ -177,7 +177,6 @@
177 177  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact, which the Values are referred (Codelist, Concept) to can be deduced from the Ruleset signature.
178 178  
179 179  == 12.3 Mapping between SDMX and VTL artefacts ==
180 -
181 181  === 12.3.1. When the mapping occurs ===
182 182  
183 183  The mapping methods between the VTL and SDMX object classes allow transforming a SDMX definition in a VTL one and vice-versa for the artefacts to be manipulated. It should be remembered that VTL programs (i.e. Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformations (nameable artefacts). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result: the input operands of the expression and the result can be SDMX artefacts. Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition.
... ... @@ -461,10 +461,13 @@
461 461  Some examples follow, for some specific values of INDICATOR and COUNTRY:
462 462  
463 463  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
466 +
464 464  … … …
465 465  
466 466  ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
470 +
467 467  ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
472 +
468 468  … … …
469 469  
470 470  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
... ... @@ -471,9 +471,13 @@
471 471  
472 472  VTL dataset   INDICATOR value COUNTRY value
473 473  
479 +
474 474  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
481 +
475 475  ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
483 +
476 476  ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
485 +
477 477  ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
478 478  
479 479  … … …
... ... @@ -481,15 +481,25 @@
481 481  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
482 482  
483 483  DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
493 +
484 484  DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
495 +
485 485  DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
497 +
486 486  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
499 +
487 487  DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
501 +
488 488  DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
503 +
489 489  DF2bis_GDPPERCAPITA_CANADA’,
505 +
490 490  … ,
507 +
491 491  DF2bis_POPGROWTH_USA’,
509 +
492 492  DF2bis_POPGROWTH_CANADA’
511 +
493 493  …);
494 494  
495 495  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -498,7 +498,9 @@
498 498  
499 499  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
500 500  
501 -=== 12.3.7 Mapping variables and value domains between VTL and SDMX ===
520 +1.
521 +11.
522 +111. Mapping variables and value domains between VTL and SDMX
502 502  
503 503  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
504 504  
... ... @@ -507,6 +507,7 @@
507 507  |**Represented Variable**|**Concept** with a definite Representation
508 508  |**Value Domain**|(((
509 509  **Representation** (see the Structure
531 +
510 510  Pattern in the Base Package)
511 511  )))
512 512  |**Enumerated Value Domain / Code List**|**Codelist**
... ... @@ -513,6 +513,7 @@
513 513  |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
514 514  |**Described Value Domain**|(((
515 515  non-enumerated** Representation**
538 +
516 516  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
517 517  )))
518 518  |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
... ... @@ -536,10 +536,10 @@
536 536  
537 537  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
538 538  
539 -== 12.4 Mapping between SDMX and VTL Data Types ==
562 +1.
563 +11. Mapping between SDMX and VTL Data Types
564 +111. VTL Data types
540 540  
541 -=== 12.4.1 VTL Data types ===
542 -
543 543  According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors.
544 544  
545 545  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
... ... @@ -546,15 +546,17 @@
546 546  
547 547  [[image:1750067055028-964.png]]
548 548  
549 -**Figure 22 – VTL Data Types**
572 +==== Figure 22 – VTL Data Types ====
550 550  
551 551  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
552 552  
553 553  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
554 554  
555 -**Figure 23 – VTL Basic Scalar Types**
578 +==== Figure 23 – VTL Basic Scalar Types ====
556 556  
557 -=== 12.4.2 VTL basic scalar types and SDMX data types ===
580 +1.
581 +11.
582 +111. VTL basic scalar types and SDMX data types
558 558  
559 559  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
560 560  
... ... @@ -572,7 +572,9 @@
572 572  
573 573  The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact.
574 574  
575 -=== 12.4.3 Mapping SDMX data types to VTL basic scalar types ===
600 +1.
601 +11.
602 +111. Mapping SDMX data types to VTL basic scalar types
576 576  
577 577  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
578 578  
... ... @@ -579,6 +579,7 @@
579 579  |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
580 580  |(((
581 581  String
609 +
582 582  (string allowing any character)
583 583  )))|string
584 584  |(((
... ... @@ -588,6 +588,7 @@
588 588  )))|string
589 589  |(((
590 590  AlphaNumeric
619 +
591 591  (string which only allows A-z and 0-9)
592 592  )))|string
593 593  |(((
... ... @@ -597,70 +597,89 @@
597 597  )))|string
598 598  |(((
599 599  BigInteger
629 +
600 600  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
601 601  )))|integer
602 602  |(((
603 603  Integer
634 +
604 604  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
636 +
605 605  (inclusive))
606 606  )))|integer
607 607  |(((
608 608  Long
641 +
609 609  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
643 +
610 610  +9223372036854775807 (inclusive))
611 611  )))|integer
612 612  |(((
613 613  Short
648 +
614 614  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
615 615  )))|integer
616 616  |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
617 617  |(((
618 618  Float
654 +
619 619  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
620 620  )))|number
621 621  |(((
622 622  Double
659 +
623 623  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
624 624  )))|number
625 625  |(((
626 626  Boolean
664 +
627 627  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
666 +
628 628  binary-valued logic: {true, false})
629 629  )))|boolean
630 630  |(((
631 631  URI
671 +
632 632  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
633 633  )))|string
634 634  |(((
635 635  Count
676 +
636 636  (an integer following a sequential pattern, increasing by 1 for each occurrence)
637 637  )))|integer
638 638  |(((
639 639  InclusiveValueRange
681 +
640 640  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
641 641  )))|number
642 642  |(((
643 643  ExclusiveValueRange
686 +
644 644  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
645 645  )))|number
646 646  |(((
647 647  Incremental
691 +
648 648  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
649 649  )))|number
650 650  |(((
651 651  ObservationalTimePeriod
696 +
652 652  (superset of StandardTimePeriod and TimeRange)
653 653  )))|time
654 654  |(((
655 655  StandardTimePeriod
701 +
656 656  (superset of BasicTimePeriod and ReportingTimePeriod)
657 657  )))|time
658 658  |(((
659 659  BasicTimePeriod
706 +
660 660  (superset of GregorianTimePeriod and DateTime)
661 661  )))|date
662 662  |(((
663 663  GregorianTimePeriod
711 +
664 664  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
665 665  )))|date
666 666  |GregorianYear (YYYY)|date
... ... @@ -668,26 +668,32 @@
668 668  |GregorianDay (YYYY-MM-DD)|date
669 669  |(((
670 670  ReportingTimePeriod
719 +
671 671  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
672 672  )))|time_period
673 673  |(((
674 674  ReportingYear
724 +
675 675  (YYYY-A1 – 1 year period)
676 676  )))|time_period
677 677  |(((
678 678  ReportingSemester
729 +
679 679  (YYYY-Ss – 6 month period)
680 680  )))|time_period
681 681  |(((
682 682  ReportingTrimester
734 +
683 683  (YYYY-Tt – 4 month period)
684 684  )))|time_period
685 685  |(((
686 686  ReportingQuarter
739 +
687 687  (YYYY-Qq – 3 month period)
688 688  )))|time_period
689 689  |(((
690 690  ReportingMonth
744 +
691 691  (YYYY-Mmm – 1 month period)
692 692  )))|time_period
693 693  |ReportingWeek|time_period
... ... @@ -694,34 +694,42 @@
694 694  | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
695 695  |(((
696 696  ReportingDay
751 +
697 697  (YYYY-Dddd – 1 day period)
698 698  )))|time_period
699 699  |(((
700 700  DateTime
756 +
701 701  (YYYY-MM-DDThh:mm:ss)
702 702  )))|date
703 703  |(((
704 704  TimeRange
761 +
705 705  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
706 706  )))|time
707 707  |(((
708 708  Month
766 +
709 709  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
710 710  )))|string
711 711  |(((
712 712  MonthDay
771 +
713 713  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
714 714  )))|string
715 715  |(((
716 716  Day
776 +
717 717  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
718 718  )))|string
719 719  |(((
720 720  Time
781 +
721 721  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
722 722  )))|string
723 723  |(((
724 724  Duration
786 +
725 725  (corresponds to XML Schema xs:duration datatype)
726 726  )))|duration
727 727  |XHTML|Metadata type – not applicable
... ... @@ -729,20 +729,27 @@
729 729  |IdentifiableReference|Metadata type – not applicable
730 730  |DataSetReference|Metadata type – not applicable
731 731  
732 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
794 +додол
733 733  
796 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
797 +
734 734  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
735 735  
736 -=== 12.4.4 Mapping VTL basic scalar types to SDMX data types ===
800 +1.
801 +11.
802 +111. Mapping VTL basic scalar types to SDMX data types
737 737  
738 738  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
739 739  
740 740  |(((
741 741  VTL basic
808 +
742 742  scalar type
743 743  )))|(((
744 744  Default SDMX data type
812 +
745 745  (BasicComponentDataType
814 +
746 746  )
747 747  )))|Default output format
748 748  |String|String|Like XML (xs:string)
... ... @@ -752,15 +752,17 @@
752 752  |Time|StandardTimePeriod|<date>/<date> (as defined above)
753 753  |time_period|(((
754 754  ReportingTimePeriod
824 +
755 755  (StandardReportingPeriod)
756 756  )))|(((
757 757   YYYY-Pppp
828 +
758 758  (according to SDMX )
759 759  )))
760 760  |Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
761 761  |Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
762 762  
763 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
834 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
764 764  
765 765  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
766 766  
... ... @@ -818,13 +818,17 @@
818 818  
819 819  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
820 820  
821 -=== 12.4.3 Null Values ===
892 +1.
893 +11.
894 +111. Null Values
822 822  
823 823  In the conversions from SDMX to VTL it is assumed by default that a missing value in SDMX becomes a NULL in VTL. After the conversion, the NULLs can be manipulated through the proper VTL operators.
824 824  
825 825  On the other side, the VTL programs can produce in output NULL values for Measures and Attributes (Null values are not allowed in the Identifiers). In the conversion from VTL to SDMX, it is assumed that a NULL in VTL becomes a missing value in SDMX. In the conversion from VTL to SDMX, the default assumption can be overridden, separately for each VTL basic scalar type, by specifying which the value that represents the NULL in SDMX is. This can be specified in the attribute "nullValue" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). A CustomType belongs to a CustomTypeScheme, which can be referenced by one or more TransformationScheme (i.e. VTL programs). The overriding assumption is applied for all the SDMX Dataflows calculated in the TransformationScheme.
826 826  
827 -=== 12.4.5 Format of the literals used in VTL Transformations ===
900 +1.
901 +11.
902 +111. Format of the literals used in VTL Transformations
828 828  
829 829  The VTL programs can contain literals, i.e. specific values of certain data types written directly in the VTL definitions or expressions. The VTL does not prescribe a specific format for the literals and leave the specific VTL systems and the definers of VTL Transformations free of using their preferred formats.
830 830  
... ... @@ -838,6 +838,7 @@
838 838  
839 839  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
840 840  
916 +
841 841  ----
842 842  
843 843  {{putFootnotes/}}