Last modified by Artur on 2025/09/10 11:19

From version 1.18
edited by Helena
on 2025/06/16 13:24
Change comment: There is no comment for this version
To version 1.12
edited by Helena
on 2025/06/16 13:10
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,7 +19,6 @@
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
22 -
23 23  === 12.2.1 Introduction ===
24 24  
25 25  The VTL can manipulate SDMX artefacts (or objects) by referencing them through predefined conventional names (aliases).
... ... @@ -49,8 +49,10 @@
49 49  
50 50  The generic structure of the URN is the following:
51 51  
52 -SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id (maintainedobject-version).*container-object-id.object-id
51 +SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id
53 53  
53 +(maintainedobject-version).*container-object-id.object-id
54 +
54 54  The **SDMXprefix** is "urn:sdmx:org", always the same for all SDMX artefacts.
55 55  
56 56  The SDMX-IM-package-name** **is the concatenation of the string** **"sdmx.infomodel." with the package-name, which the artefact belongs to. For example, for referencing a Dataflow the SDMX-IM-package-name is "sdmx.infomodel.datastructure", because the class Dataflow belongs to the package "datastructure".
... ... @@ -71,19 +71,24 @@
71 71  
72 72  The maintainedobject-version is the version, according to the SDMX versioning rules, of the maintained object which the artefact belongs to (for example, possible versions might be 1.0, 2.3, 1.0.0, 2.1.0 or 3.1.2).
73 73  
74 -The container-object-id does not apply to the classes that can be referenced in VTL Transformations, therefore is not present in their URN.
75 +The container-object-id does not apply to the classes that can be referenced in VTL Transformations, therefore is not present in their URN
75 75  
76 76  The object-id is the name of the non-maintainable artefact (when the artefact is maintainable its name is already specified as the maintainedobject-id, see above), in particular it has to be specified:
77 77  
78 -* if the artefact is a Dimension, TimeDimension, Measure or DataAttribute (the object-id is the name of one of the artefacts above, which are data structure components)
79 +* if the artefact is a Dimension, TimeDimension, Measure or
80 +
81 +DataAttribute (the object-id is the name of one of the artefacts above, which are data structure components)
82 +
79 79  * if the artefact is a Concept (the object-id is the name of the Concept)
80 80  
81 81  For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as{{footnote}}Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.{{/footnote}}:
82 82  
83 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
84 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
85 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
87 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
86 86  
89 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
90 +
91 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
92 +
87 87  === 12.2.3 Abbreviation of the URN ===
88 88  
89 89  The complete formulation of the URN described above is exhaustive but verbose, even for very simple statements. In order to reduce the verbosity through a simplified identifier and make the work of transformation definers easier, proper abbreviations of the URN are possible. Using this approach, the referenced artefacts remain intelligible in the VTL code by a human reader.
... ... @@ -92,13 +92,10 @@
92 92  
93 93  * The SDMXprefix can be omitted for all the SDMX objects, because it is a prefixed string (urn:sdmx:org), always the same for SDMX objects.
94 94  * The SDMX-IM-package-name** **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is:
95 -** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute,
96 -** "conceptscheme" for the class Concept,
97 -** "codelist" for the class Codelist.
101 +** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute, o "conceptscheme" for the class Concept, o "codelist" for the class Codelist.
98 98  * The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator{{footnote}}For the syntax of the VTL operators see the VTL Reference Manual{{/footnote}}, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}In case the invoked artefact is a VTL component, which can be invoked only within the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name (e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced from the data structure of the SDMX Dataflow, which the component belongs to.{{/footnote}}.
99 99  * If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency{{footnote}}If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is considered different even if only part of the composite name is different (for example AgencyA.Dept1.Unit3 is a different Agency than the previous one). Moreover the agency-id cannot be omitted in part (i.e., if a TransformationScheme owned by AgencyA.Dept1.Unit2 references an artefact coming from AgencyA.Dept1.Unit3, the specification of the agency-id becomes mandatory and must be complete, without omitting the possibly equal parts like AgencyA.Dept1){{/footnote}}. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements).
100 -* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted:
101 -** if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
104 +* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
102 102  ** if the referenced artefact is a Dimension, TimeDimension, Measure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions;
103 103  ** if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class, the maintained object is the conceptScheme-id and cannot be omitted;
104 104  ** if the referenced artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the codelist-id and obviously cannot be omitted.
... ... @@ -110,47 +110,51 @@
110 110  
111 111  For example, the full formulation that uses the complete URN shown at the end of the previous paragraph:
112 112  
113 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
114 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
115 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
116 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
116 116  
118 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
119 +
120 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
121 +
117 117  by omitting all the non-essential parts would become simply:
118 118  
119 -> DFR  : =  DF1 + DF2
124 +DFR := DF1 + DF2
120 120  
121 121  The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:
122 122  
123 -> 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
128 +'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
124 124  
125 125  if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^:
126 126  
127 -> CL_FREQ
132 +CL_FREQ
128 128  
129 129  As for the references to the components, it can be enough to specify the componentId, given that the dataStructure-Id can be omitted. An example of non-abbreviated reference, if the data structure is DST1 and the component is SECTOR, is the following:
130 130  
131 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S ECTOR'
136 +'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S
132 132  
138 +ECTOR'
139 +
133 133  The corresponding fully abbreviated reference, if made from a TransformationScheme belonging to AG, would become simply:
134 134  
135 -> SECTOR
142 +SECTOR
136 136  
137 137  For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as{{footnote}}The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR is called SEC{{/footnote}}:
138 138  
139 -> 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
146 +'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
140 140  
141 141  In the references to the Concepts, which can exist for example in the definition of the VTL Rulesets, at least the conceptScheme-id and the concept-id must be specified.
142 142  
143 143  An example of non-abbreviated reference, if the conceptScheme-id is CS1 and the concept-id is SECTOR, is the following:
144 144  
145 -> 'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
152 +'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
146 146  
147 147  The corresponding fully abbreviated reference, if made from a RulesetScheme belonging to AG, would become simply:
148 148  
149 -> CS1(1.0.0).SECTOR
156 +CS1(1.0.0).SECTOR
150 150  
151 151  The Codes and in general all the Values can be written without any other specification, for example, the transformation to check if the values of the measures of the Dataflow DF1 are between 0 and 25000 can be written like follows:
152 152  
153 -> 'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
160 +'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
154 154  
155 155  The artefact (Component, Concept, Codelist …) which the Values are referred to can be deduced from the context in which the reference is made, taking also into account the VTL syntax. In the Transformation above, for example, the values 0 and 2500 are compared to the values of the measures of DF1(1.0.0).
156 156  
... ... @@ -173,7 +173,6 @@
173 173  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact, which the Values are referred (Codelist, Concept) to can be deduced from the Ruleset signature.
174 174  
175 175  == 12.3 Mapping between SDMX and VTL artefacts ==
176 -
177 177  === 12.3.1. When the mapping occurs ===
178 178  
179 179  The mapping methods between the VTL and SDMX object classes allow transforming a SDMX definition in a VTL one and vice-versa for the artefacts to be manipulated. It should be remembered that VTL programs (i.e. Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformations (nameable artefacts). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result: the input operands of the expression and the result can be SDMX artefacts. Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition.
... ... @@ -457,10 +457,13 @@
457 457  Some examples follow, for some specific values of INDICATOR and COUNTRY:
458 458  
459 459  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
466 +
460 460  … … …
461 461  
462 462  ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
470 +
463 463  ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
472 +
464 464  … … …
465 465  
466 466  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
... ... @@ -467,9 +467,13 @@
467 467  
468 468  VTL dataset   INDICATOR value COUNTRY value
469 469  
479 +
470 470  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
481 +
471 471  ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
483 +
472 472  ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
485 +
473 473  ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
474 474  
475 475  … … …
... ... @@ -477,15 +477,25 @@
477 477  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
478 478  
479 479  DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
493 +
480 480  DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
495 +
481 481  DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
497 +
482 482  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
499 +
483 483  DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
501 +
484 484  DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
503 +
485 485  DF2bis_GDPPERCAPITA_CANADA’,
505 +
486 486  … ,
507 +
487 487  DF2bis_POPGROWTH_USA’,
509 +
488 488  DF2bis_POPGROWTH_CANADA’
511 +
489 489  …);
490 490  
491 491  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -494,7 +494,9 @@
494 494  
495 495  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
496 496  
497 -=== 12.3.7 Mapping variables and value domains between VTL and SDMX ===
520 +1.
521 +11.
522 +111. Mapping variables and value domains between VTL and SDMX
498 498  
499 499  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
500 500  
... ... @@ -503,6 +503,7 @@
503 503  |**Represented Variable**|**Concept** with a definite Representation
504 504  |**Value Domain**|(((
505 505  **Representation** (see the Structure
531 +
506 506  Pattern in the Base Package)
507 507  )))
508 508  |**Enumerated Value Domain / Code List**|**Codelist**
... ... @@ -509,6 +509,7 @@
509 509  |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
510 510  |**Described Value Domain**|(((
511 511  non-enumerated** Representation**
538 +
512 512  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
513 513  )))
514 514  |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
... ... @@ -532,10 +532,10 @@
532 532  
533 533  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
534 534  
535 -== 12.4 Mapping between SDMX and VTL Data Types ==
562 +1.
563 +11. Mapping between SDMX and VTL Data Types
564 +111. VTL Data types
536 536  
537 -=== 12.4.1 VTL Data types ===
538 -
539 539  According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors.
540 540  
541 541  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
... ... @@ -542,15 +542,17 @@
542 542  
543 543  [[image:1750067055028-964.png]]
544 544  
545 -**Figure 22 – VTL Data Types**
572 +==== Figure 22 – VTL Data Types ====
546 546  
547 547  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
548 548  
549 549  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
550 550  
551 -**Figure 23 – VTL Basic Scalar Types**
578 +==== Figure 23 – VTL Basic Scalar Types ====
552 552  
553 -=== 12.4.2 VTL basic scalar types and SDMX data types ===
580 +1.
581 +11.
582 +111. VTL basic scalar types and SDMX data types
554 554  
555 555  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
556 556  
... ... @@ -568,7 +568,9 @@
568 568  
569 569  The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact.
570 570  
571 -=== 12.4.3 Mapping SDMX data types to VTL basic scalar types ===
600 +1.
601 +11.
602 +111. Mapping SDMX data types to VTL basic scalar types
572 572  
573 573  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
574 574  
... ... @@ -575,6 +575,7 @@
575 575  |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
576 576  |(((
577 577  String
609 +
578 578  (string allowing any character)
579 579  )))|string
580 580  |(((
... ... @@ -584,6 +584,7 @@
584 584  )))|string
585 585  |(((
586 586  AlphaNumeric
619 +
587 587  (string which only allows A-z and 0-9)
588 588  )))|string
589 589  |(((
... ... @@ -593,70 +593,89 @@
593 593  )))|string
594 594  |(((
595 595  BigInteger
629 +
596 596  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
597 597  )))|integer
598 598  |(((
599 599  Integer
634 +
600 600  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
636 +
601 601  (inclusive))
602 602  )))|integer
603 603  |(((
604 604  Long
641 +
605 605  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
643 +
606 606  +9223372036854775807 (inclusive))
607 607  )))|integer
608 608  |(((
609 609  Short
648 +
610 610  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
611 611  )))|integer
612 612  |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
613 613  |(((
614 614  Float
654 +
615 615  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
616 616  )))|number
617 617  |(((
618 618  Double
659 +
619 619  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
620 620  )))|number
621 621  |(((
622 622  Boolean
664 +
623 623  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
666 +
624 624  binary-valued logic: {true, false})
625 625  )))|boolean
626 626  |(((
627 627  URI
671 +
628 628  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
629 629  )))|string
630 630  |(((
631 631  Count
676 +
632 632  (an integer following a sequential pattern, increasing by 1 for each occurrence)
633 633  )))|integer
634 634  |(((
635 635  InclusiveValueRange
681 +
636 636  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
637 637  )))|number
638 638  |(((
639 639  ExclusiveValueRange
686 +
640 640  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
641 641  )))|number
642 642  |(((
643 643  Incremental
691 +
644 644  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
645 645  )))|number
646 646  |(((
647 647  ObservationalTimePeriod
696 +
648 648  (superset of StandardTimePeriod and TimeRange)
649 649  )))|time
650 650  |(((
651 651  StandardTimePeriod
701 +
652 652  (superset of BasicTimePeriod and ReportingTimePeriod)
653 653  )))|time
654 654  |(((
655 655  BasicTimePeriod
706 +
656 656  (superset of GregorianTimePeriod and DateTime)
657 657  )))|date
658 658  |(((
659 659  GregorianTimePeriod
711 +
660 660  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
661 661  )))|date
662 662  |GregorianYear (YYYY)|date
... ... @@ -664,26 +664,32 @@
664 664  |GregorianDay (YYYY-MM-DD)|date
665 665  |(((
666 666  ReportingTimePeriod
719 +
667 667  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
668 668  )))|time_period
669 669  |(((
670 670  ReportingYear
724 +
671 671  (YYYY-A1 – 1 year period)
672 672  )))|time_period
673 673  |(((
674 674  ReportingSemester
729 +
675 675  (YYYY-Ss – 6 month period)
676 676  )))|time_period
677 677  |(((
678 678  ReportingTrimester
734 +
679 679  (YYYY-Tt – 4 month period)
680 680  )))|time_period
681 681  |(((
682 682  ReportingQuarter
739 +
683 683  (YYYY-Qq – 3 month period)
684 684  )))|time_period
685 685  |(((
686 686  ReportingMonth
744 +
687 687  (YYYY-Mmm – 1 month period)
688 688  )))|time_period
689 689  |ReportingWeek|time_period
... ... @@ -690,34 +690,42 @@
690 690  | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
691 691  |(((
692 692  ReportingDay
751 +
693 693  (YYYY-Dddd – 1 day period)
694 694  )))|time_period
695 695  |(((
696 696  DateTime
756 +
697 697  (YYYY-MM-DDThh:mm:ss)
698 698  )))|date
699 699  |(((
700 700  TimeRange
761 +
701 701  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
702 702  )))|time
703 703  |(((
704 704  Month
766 +
705 705  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
706 706  )))|string
707 707  |(((
708 708  MonthDay
771 +
709 709  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
710 710  )))|string
711 711  |(((
712 712  Day
776 +
713 713  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
714 714  )))|string
715 715  |(((
716 716  Time
781 +
717 717  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
718 718  )))|string
719 719  |(((
720 720  Duration
786 +
721 721  (corresponds to XML Schema xs:duration datatype)
722 722  )))|duration
723 723  |XHTML|Metadata type – not applicable
... ... @@ -725,20 +725,27 @@
725 725  |IdentifiableReference|Metadata type – not applicable
726 726  |DataSetReference|Metadata type – not applicable
727 727  
728 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
794 +додол
729 729  
796 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
797 +
730 730  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
731 731  
732 -=== 12.4.4 Mapping VTL basic scalar types to SDMX data types ===
800 +1.
801 +11.
802 +111. Mapping VTL basic scalar types to SDMX data types
733 733  
734 734  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
735 735  
736 736  |(((
737 737  VTL basic
808 +
738 738  scalar type
739 739  )))|(((
740 740  Default SDMX data type
812 +
741 741  (BasicComponentDataType
814 +
742 742  )
743 743  )))|Default output format
744 744  |String|String|Like XML (xs:string)
... ... @@ -748,15 +748,17 @@
748 748  |Time|StandardTimePeriod|<date>/<date> (as defined above)
749 749  |time_period|(((
750 750  ReportingTimePeriod
824 +
751 751  (StandardReportingPeriod)
752 752  )))|(((
753 753   YYYY-Pppp
828 +
754 754  (according to SDMX )
755 755  )))
756 756  |Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
757 757  |Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
758 758  
759 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
834 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
760 760  
761 761  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
762 762  
... ... @@ -814,13 +814,17 @@
814 814  
815 815  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
816 816  
817 -=== 12.4.3 Null Values ===
892 +1.
893 +11.
894 +111. Null Values
818 818  
819 819  In the conversions from SDMX to VTL it is assumed by default that a missing value in SDMX becomes a NULL in VTL. After the conversion, the NULLs can be manipulated through the proper VTL operators.
820 820  
821 821  On the other side, the VTL programs can produce in output NULL values for Measures and Attributes (Null values are not allowed in the Identifiers). In the conversion from VTL to SDMX, it is assumed that a NULL in VTL becomes a missing value in SDMX. In the conversion from VTL to SDMX, the default assumption can be overridden, separately for each VTL basic scalar type, by specifying which the value that represents the NULL in SDMX is. This can be specified in the attribute "nullValue" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). A CustomType belongs to a CustomTypeScheme, which can be referenced by one or more TransformationScheme (i.e. VTL programs). The overriding assumption is applied for all the SDMX Dataflows calculated in the TransformationScheme.
822 822  
823 -=== 12.4.5 Format of the literals used in VTL Transformations ===
900 +1.
901 +11.
902 +111. Format of the literals used in VTL Transformations
824 824  
825 825  The VTL programs can contain literals, i.e. specific values of certain data types written directly in the VTL definitions or expressions. The VTL does not prescribe a specific format for the literals and leave the specific VTL systems and the definers of VTL Transformations free of using their preferred formats.
826 826  
... ... @@ -834,6 +834,7 @@
834 834  
835 835  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
836 836  
916 +
837 837  ----
838 838  
839 839  {{putFootnotes/}}