Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -198,7 +198,7 @@ 198 198 199 199 The possible mapping options are described in more detail in the following sections. 200 200 201 -=== 12.3. 2Mapping from SDMX to VTL data structures ===201 +=== 12.3.3 Mapping from SDMX to VTL data structures === 202 202 203 203 ==== 12.3.3.1 Basic Mapping ==== 204 204 ... ... @@ -206,11 +206,12 @@ 206 206 207 207 When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 208 208 209 -|**SDMX**|**VTL** 210 -|Dimension|(Simple) Identifier 211 -|TimeDimension|(Time) Identifier 212 -|Measure|Measure 213 -|DataAttribute|Attribute 209 +(% style="width:468.294px" %) 210 +|(% style="width:196px" %)**SDMX**|(% style="width:269px" %)**VTL** 211 +|(% style="width:196px" %)Dimension|(% style="width:269px" %)(Simple) Identifier 212 +|(% style="width:196px" %)TimeDimension|(% style="width:269px" %)(Time) Identifier 213 +|(% style="width:196px" %)Measure|(% style="width:269px" %)Measure 214 +|(% style="width:196px" %)DataAttribute|(% style="width:269px" %)Attribute 214 214 215 215 The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set). 216 216 ... ... @@ -220,10 +220,8 @@ 220 220 221 221 An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD. 222 222 223 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the 224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}. 224 224 225 -MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}. 226 - 227 227 Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension. 228 228 229 229 If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph). ... ... @@ -236,16 +236,18 @@ 236 236 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 237 237 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 238 238 ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 239 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 239 +** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 240 240 241 241 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 242 242 243 -|**SDMX**|**VTL** 244 -|Dimension|(Simple) Identifier 245 -|TimeDimension|(Time) Identifier 246 -|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension 247 -|DataAttribute not depending on the MeasureDimension|Attribute 248 -|DataAttribute depending on the MeasureDimension|((( 243 +(% style="width:739.294px" %) 244 +|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL** 245 +|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier 246 +|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier 247 +|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension 248 +|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute 249 +|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)((( 249 249 One Attribute for each Code of the 250 250 SDMX MeasureDimension 251 251 ))) ... ... @@ -255,19 +255,14 @@ 255 255 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 256 256 257 257 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 259 - 260 -Identifiers, (time) Identifier and Attributes. 261 - 259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 262 262 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 263 263 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 264 264 265 265 ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ==== 266 266 267 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 268 268 269 -Attributes. 270 - 271 271 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. 272 272 273 273 Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures. ... ... @@ -284,11 +284,12 @@ 284 284 285 285 Mapping table: 286 286 287 -|**VTL**|**SDMX** 288 -|(Simple) Identifier|Dimension 289 -|(Time) Identifier|TimeDimension 290 -|Measure|Measure 291 -|Attribute|DataAttribute 283 +(% style="width:470.294px" %) 284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX** 285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension 286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension 287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure 288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute 292 292 293 293 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 294 294 ... ... @@ -316,11 +316,12 @@ 316 316 317 317 The summary mapping table of the **unpivot** mapping method is the following: 318 318 319 -|**VTL**|**SDMX** 320 -|(Simple) Identifier|Dimension 321 -|(Time) Identifier|TimeDimension 322 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 323 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 316 +(% style="width:638.294px" %) 317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX** 318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension 319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension 320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 324 324 325 325 At observation / data point level: 326 326 ... ... @@ -342,12 +342,13 @@ 342 342 343 343 The mapping table is the following: 344 344 345 -|VTL|SDMX 346 -|(Simple) Identifier|Dimension 347 -|(Time) Identifier|TimeDimension 348 -|Some Measures|Measure 349 -|Other Measures|DataAttribute 350 -|Attribute|DataAttribute 343 +(% style="width:467.294px" %) 344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX 345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension 346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension 347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure 348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute 349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute 351 351 352 352 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 353 353 ... ... @@ -385,11 +385,11 @@ 385 385 386 386 Therefore, the generic name of this kind of VTL datasets would be: 387 387 388 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 389 389 390 390 Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be: 391 391 392 -‘DF(1.0.0)/POPULATION.USA’ 391 +> ‘DF(1.0.0)/POPULATION.USA’ 393 393 394 394 In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA. 395 395 ... ... @@ -403,26 +403,22 @@ 403 403 404 404 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 405 405 406 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 407 407 408 -basic, pivot …). 409 - 410 410 In the example above, for all the datasets of the kind 411 411 412 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 413 413 414 414 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 415 415 416 -‘DF1(1.0.0)/POPULATION.USA’ := 413 +> ‘DF1(1.0.0)/POPULATION.USA’ := 414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 415 +> 416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ := 417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 418 +> 419 +> … … … 417 417 418 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 419 - 420 -‘DF1(1.0.0)/POPULATION.CANADA’ := 421 - 422 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 423 - 424 -… … … 425 - 426 426 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} 427 427 428 428 In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. ... ... @@ -431,10 +431,9 @@ 431 431 432 432 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 433 433 434 -‘DF1(1.0.0)/POPULATION.’ := 429 +> ‘DF1(1.0.0)/POPULATION.’ := 430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 435 435 436 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 437 - 438 438 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 439 439 440 440 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations. ... ... @@ -452,41 +452,38 @@ 452 452 453 453 The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}} 454 454 455 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 456 456 457 457 Some examples follow, for some specific values of INDICATOR and COUNTRY: 458 458 459 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 460 -… … … 453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 454 +> … … … 455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 457 +> … … … 461 461 462 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 463 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 464 -… … … 465 - 466 466 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 467 467 468 468 VTL dataset INDICATOR value COUNTRY value 469 469 470 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 471 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 472 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 473 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 465 +> ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 466 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 467 +> … … … 474 474 475 -… … … 476 - 477 477 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 478 478 479 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 480 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 481 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 482 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 483 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 484 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 485 -DF2bis_GDPPERCAPITA_CANADA’, 486 -… , 487 -DF2bis_POPGROWTH_USA’, 488 -DF2bis_POPGROWTH_CANADA’ 489 -…); 471 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 472 +> DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 473 +> DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 474 +> DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 475 +> DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 476 +> DF2bis_GDPPERCAPITA_CANADA’, 477 +> … , 478 +> DF2bis_POPGROWTH_USA’, 479 +> DF2bis_POPGROWTH_CANADA’ 480 +> …); 490 490 491 491 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 492 492 ... ... @@ -498,25 +498,26 @@ 498 498 499 499 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 500 500 501 -|VTL|SDMX 502 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 503 -|**Represented Variable**|**Concept** with a definite Representation 504 -|**Value Domain**|((( 492 +(% style="width:706.294px" %) 493 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX 494 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 495 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation 496 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)((( 505 505 **Representation** (see the Structure 506 506 Pattern in the Base Package) 507 507 ))) 508 -|**Enumerated Value Domain / Code List**|**Codelist** 509 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 510 -|**Described Value Domain**|((( 500 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist** 501 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 502 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)((( 511 511 non-enumerated** Representation** 512 512 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 513 513 ))) 514 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 515 -| |to a valid **value **(for non-enumerated** **Representations) 516 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 517 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 518 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 519 -|**Set list**|This abstraction does not exist in SDMX 506 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 507 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations) 508 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 509 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 510 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 511 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX 520 520 521 521 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 522 522 ... ... @@ -524,8 +524,10 @@ 524 524 525 525 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 526 526 527 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.519 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 528 528 521 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 522 + 529 529 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 530 530 531 531 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -540,8 +540,9 @@ 540 540 541 541 The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual: 542 542 543 -[[image:1750067055028-964.png]] 544 544 538 +[[image:1750070288958-132.png]] 539 + 545 545 **Figure 22 – VTL Data Types** 546 546 547 547 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. ... ... @@ -548,6 +548,8 @@ 548 548 549 549 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 550 550 546 +[[image:1750070310572-584.png]] 547 + 551 551 **Figure 23 – VTL Basic Scalar Types** 552 552 553 553 === 12.4.2 VTL basic scalar types and SDMX data types === ... ... @@ -572,158 +572,157 @@ 572 572 573 573 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 574 574 575 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 576 -|((( 572 +(% style="width:583.294px" %) 573 +|(% style="width:360px" %)SDMX data type (BasicComponentDataType)|(% style="width:221px" %)Default VTL basic scalar type 574 +|(% style="width:360px" %)((( 577 577 String 578 578 (string allowing any character) 579 -)))|string 580 -|((( 581 -Alpha 582 - 577 +)))|(% style="width:221px" %)string 578 +|(% style="width:360px" %)((( 579 +Alpha 583 583 (string which only allows A-z) 584 -)))|string 585 -|((( 581 +)))|(% style="width:221px" %)string 582 +|(% style="width:360px" %)((( 586 586 AlphaNumeric 587 587 (string which only allows A-z and 0-9) 588 -)))|string 589 -|((( 585 +)))|(% style="width:221px" %)string 586 +|(% style="width:360px" %)((( 590 590 Numeric 591 - 592 592 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 593 -)))|string 594 -|((( 589 +)))|(% style="width:221px" %)string 590 +|(% style="width:360px" %)((( 595 595 BigInteger 596 596 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 597 -)))|integer 598 -|((( 593 +)))|(% style="width:221px" %)integer 594 +|(% style="width:360px" %)((( 599 599 Integer 600 600 (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 601 601 (inclusive)) 602 -)))|integer 603 -|((( 598 +)))|(% style="width:221px" %)integer 599 +|(% style="width:360px" %)((( 604 604 Long 605 605 (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 606 606 +9223372036854775807 (inclusive)) 607 -)))|integer 608 -|((( 603 +)))|(% style="width:221px" %)integer 604 +|(% style="width:360px" %)((( 609 609 Short 610 610 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 611 -)))|integer 612 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 613 -|((( 607 +)))|(% style="width:221px" %)integer 608 +|(% style="width:360px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:221px" %)number 609 +|(% style="width:360px" %)((( 614 614 Float 615 615 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 616 -)))|number 617 -|((( 612 +)))|(% style="width:221px" %)number 613 +|(% style="width:360px" %)((( 618 618 Double 619 619 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 620 -)))|number 621 -|((( 616 +)))|(% style="width:221px" %)number 617 +|(% style="width:360px" %)((( 622 622 Boolean 623 623 (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 624 624 binary-valued logic: {true, false}) 625 -)))|boolean 626 -|((( 621 +)))|(% style="width:221px" %)boolean 622 +|(% style="width:360px" %)((( 627 627 URI 628 628 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 629 -)))|string 630 -|((( 625 +)))|(% style="width:221px" %)string 626 +|(% style="width:360px" %)((( 631 631 Count 632 632 (an integer following a sequential pattern, increasing by 1 for each occurrence) 633 -)))|integer 634 -|((( 629 +)))|(% style="width:221px" %)integer 630 +|(% style="width:360px" %)((( 635 635 InclusiveValueRange 636 636 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 637 -)))|number 638 -|((( 633 +)))|(% style="width:221px" %)number 634 +|(% style="width:360px" %)((( 639 639 ExclusiveValueRange 640 640 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 641 -)))|number 642 -|((( 637 +)))|(% style="width:221px" %)number 638 +|(% style="width:360px" %)((( 643 643 Incremental 644 644 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 645 -)))|number 646 -|((( 641 +)))|(% style="width:221px" %)number 642 +|(% style="width:360px" %)((( 647 647 ObservationalTimePeriod 648 648 (superset of StandardTimePeriod and TimeRange) 649 -)))|time 650 -|((( 645 +)))|(% style="width:221px" %)time 646 +|(% style="width:360px" %)((( 651 651 StandardTimePeriod 652 652 (superset of BasicTimePeriod and ReportingTimePeriod) 653 -)))|time 654 -|((( 649 +)))|(% style="width:221px" %)time 650 +|(% style="width:360px" %)((( 655 655 BasicTimePeriod 656 656 (superset of GregorianTimePeriod and DateTime) 657 -)))|date 658 -|((( 653 +)))|(% style="width:221px" %)date 654 +|(% style="width:360px" %)((( 659 659 GregorianTimePeriod 660 660 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 661 -)))|date 662 -|GregorianYear (YYYY)|date 663 -|GregorianYearMonth / GregorianMonth (YYYY-MM)|date 664 -|GregorianDay (YYYY-MM-DD)|date 665 -|((( 657 +)))|(% style="width:221px" %)date 658 +|(% style="width:360px" %)GregorianYear (YYYY)|(% style="width:221px" %)date 659 +|(% style="width:360px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% style="width:221px" %)date 660 +|(% style="width:360px" %)GregorianDay (YYYY-MM-DD)|(% style="width:221px" %)date 661 +|(% style="width:360px" %)((( 666 666 ReportingTimePeriod 667 667 (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 668 -)))|time_period 669 -|((( 664 +)))|(% style="width:221px" %)time_period 665 +|(% style="width:360px" %)((( 670 670 ReportingYear 671 671 (YYYY-A1 – 1 year period) 672 -)))|time_period 673 -|((( 668 +)))|(% style="width:221px" %)time_period 669 +|(% style="width:360px" %)((( 674 674 ReportingSemester 675 675 (YYYY-Ss – 6 month period) 676 -)))|time_period 677 -|((( 672 +)))|(% style="width:221px" %)time_period 673 +|(% style="width:360px" %)((( 678 678 ReportingTrimester 679 679 (YYYY-Tt – 4 month period) 680 -)))|time_period 681 -|((( 676 +)))|(% style="width:221px" %)time_period 677 +|(% style="width:360px" %)((( 682 682 ReportingQuarter 683 683 (YYYY-Qq – 3 month period) 684 -)))|time_period 685 -|((( 680 +)))|(% style="width:221px" %)time_period 681 +|(% style="width:360px" %)((( 686 686 ReportingMonth 687 687 (YYYY-Mmm – 1 month period) 688 -)))|time_period 689 -|ReportingWeek|time_period 690 -| (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)| 691 -|((( 684 +)))|(% style="width:221px" %)time_period 685 +|(% style="width:360px" %)ReportingWeek|(% style="width:221px" %)time_period 686 +|(% style="width:360px" %) (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% style="width:221px" %) 687 +|(% style="width:360px" %)((( 692 692 ReportingDay 693 693 (YYYY-Dddd – 1 day period) 694 -)))|time_period 695 -|((( 690 +)))|(% style="width:221px" %)time_period 691 +|(% style="width:360px" %)((( 696 696 DateTime 697 697 (YYYY-MM-DDThh:mm:ss) 698 -)))|date 699 -|((( 694 +)))|(% style="width:221px" %)date 695 +|(% style="width:360px" %)((( 700 700 TimeRange 701 701 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 702 -)))|time 703 -|((( 698 +)))|(% style="width:221px" %)time 699 +|(% style="width:360px" %)((( 704 704 Month 705 705 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 706 -)))|string 707 -|((( 702 +)))|(% style="width:221px" %)string 703 +|(% style="width:360px" %)((( 708 708 MonthDay 709 709 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 710 -)))|string 711 -|((( 706 +)))|(% style="width:221px" %)string 707 +|(% style="width:360px" %)((( 712 712 Day 713 713 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 714 -)))|string 715 -|((( 710 +)))|(% style="width:221px" %)string 711 +|(% style="width:360px" %)((( 716 716 Time 717 717 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 718 -)))|string 719 -|((( 714 +)))|(% style="width:221px" %)string 715 +|(% style="width:360px" %)((( 720 720 Duration 721 721 (corresponds to XML Schema xs:duration datatype) 722 -)))|duration 723 -|XHTML|Metadata type – not applicable 724 -|KeyValues|Metadata type – not applicable 725 -|IdentifiableReference|Metadata type – not applicable 726 -|DataSetReference|Metadata type – not applicable 718 +)))|(% style="width:221px" %)duration 719 +|(% style="width:360px" %)XHTML|(% style="width:221px" %)Metadata type – not applicable 720 +|(% style="width:360px" %)KeyValues|(% style="width:221px" %)Metadata type – not applicable 721 +|(% style="width:360px" %)IdentifiableReference|(% style="width:221px" %)Metadata type – not applicable 722 +|(% style="width:360px" %)DataSetReference|(% style="width:221px" %)Metadata type – not applicable 727 727 728 728 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 729 729 ... ... @@ -733,84 +733,82 @@ 733 733 734 734 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 735 735 736 - |(((737 - VTLbasic738 -scalar type 739 -)))|((( 732 +(% style="width:748.294px" %) 733 +|(% style="width:164px" %)((( 734 +VTL basic scalar type 735 +)))|(% style="width:304px" %)((( 740 740 Default SDMX data type 741 -(BasicComponentDataType 742 -) 743 -)))|Default output format 744 -|String|String|Like XML (xs:string) 745 -|Number|Float|Like XML (xs:float) 746 -|Integer|Integer|Like XML (xs:int) 747 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 748 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 749 -|time_period|((( 737 +(BasicComponentDataType) 738 +)))|(% style="width:277px" %)Default output format 739 +|(% style="width:164px" %)String|(% style="width:304px" %)String|(% style="width:277px" %)Like XML (xs:string) 740 +|(% style="width:164px" %)Number|(% style="width:304px" %)Float|(% style="width:277px" %)Like XML (xs:float) 741 +|(% style="width:164px" %)Integer|(% style="width:304px" %)Integer|(% style="width:277px" %)Like XML (xs:int) 742 +|(% style="width:164px" %)Date|(% style="width:304px" %)DateTime|(% style="width:277px" %)YYYY-MM-DDT00:00:00Z 743 +|(% style="width:164px" %)Time|(% style="width:304px" %)StandardTimePeriod|(% style="width:277px" %)<date>/<date> (as defined above) 744 +|(% style="width:164px" %)time_period|(% style="width:304px" %)((( 750 750 ReportingTimePeriod 751 751 (StandardReportingPeriod) 752 -)))|((( 747 +)))|(% style="width:277px" %)((( 753 753 YYYY-Pppp 754 754 (according to SDMX ) 755 755 ))) 756 -|Duration|Duration|Like XML(xs:duration) PnYnMnDTnHnMnS757 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 751 +|(% style="width:164px" %)Duration|(% style="width:304px" %)Duration|(% style="width:277px" %)Like XML (xs:duration) PnYnMnDTnHnMnS 752 +|(% style="width:164px" %)Boolean|(% style="width:304px" %)Boolean|(% style="width:277px" %)Like XML (xs:boolean) with the values "true" or "false" 758 758 759 759 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 760 760 761 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section 756 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 762 762 763 -Transformations and Expressions of the SDMX information model). 764 - 765 765 The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table. 766 766 767 -|(% colspan="2" %)VTL special characters for the formatting masks 768 -|(% colspan="2" %) 769 -|(% colspan="2" %)Number 770 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 771 -|E|one numeric digit (for the exponent of the scientific notation) 772 -|. (dot)|possible separator between the integer and the decimal parts. 773 -|, (comma)|possible separator between the integer and the decimal parts. 774 -| | 775 -|(% colspan="2" %)Time and duration 776 -|C|century 777 -|Y|year 778 -|S|semester 779 -|Q|quarter 780 -|M|month 781 -|W|week 782 -|D|day 783 -|h|hour digit (by default on 24 hours) 784 -|M|minute 785 -|S|second 786 -|D|decimal of second 787 -|P|period indicator (representation in one digit for the duration) 788 -|P|number of the periods specified in the period indicator 789 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm") 790 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January) 791 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday) 792 -|Month|lowercase textual representation of the month (e.g., january) 793 -|Day|lowercase textual representation of the month (e.g., monday) 794 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January) 795 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 796 -| | 797 -|(% colspan="2" %)String 798 -|X|any string character 799 -|Z|any string character from "A" to "z" 800 -|9|any string character from "0" to "9" 801 -| | 802 -|(% colspan="2" %)Boolean 803 -|B|Boolean using "true" for True and "false" for False 804 -|1|Boolean using "1" for True and "0" for False 805 -|0|Boolean using "0" for True and "1" for False 806 -| | 807 -|(% colspan="2" %)Other qualifiers 808 -|*|an arbitrary number of digits (of the preceding type) 809 -|+|at least one digit (of the preceding type) 810 -|( )|optional digits (specified within the brackets) 811 -|\|prefix for the special characters that must appear in the mask 812 -|N|fixed number of digits used in the preceding textual representation of the month or the day 813 -| | 760 +(% style="width:717.294px" %) 761 +|(% colspan="2" style="width:714px" %)VTL special characters for the formatting masks 762 +|(% colspan="2" style="width:714px" %) 763 +|(% colspan="2" style="width:714px" %)Number 764 +|(% style="width:122px" %)D|(% style="width:591px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 765 +|(% style="width:122px" %)E|(% style="width:591px" %)one numeric digit (for the exponent of the scientific notation) 766 +|(% style="width:122px" %). (dot)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 767 +|(% style="width:122px" %), (comma)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 768 +|(% style="width:122px" %) |(% style="width:591px" %) 769 +|(% colspan="2" style="width:714px" %)Time and duration 770 +|(% style="width:122px" %)C|(% style="width:591px" %)century 771 +|(% style="width:122px" %)Y|(% style="width:591px" %)year 772 +|(% style="width:122px" %)S|(% style="width:591px" %)semester 773 +|(% style="width:122px" %)Q|(% style="width:591px" %)quarter 774 +|(% style="width:122px" %)M|(% style="width:591px" %)month 775 +|(% style="width:122px" %)W|(% style="width:591px" %)week 776 +|(% style="width:122px" %)D|(% style="width:591px" %)day 777 +|(% style="width:122px" %)h|(% style="width:591px" %)hour digit (by default on 24 hours) 778 +|(% style="width:122px" %)M|(% style="width:591px" %)minute 779 +|(% style="width:122px" %)S|(% style="width:591px" %)second 780 +|(% style="width:122px" %)D|(% style="width:591px" %)decimal of second 781 +|(% style="width:122px" %)P|(% style="width:591px" %)period indicator (representation in one digit for the duration) 782 +|(% style="width:122px" %)P|(% style="width:591px" %)number of the periods specified in the period indicator 783 +|(% style="width:122px" %)AM/PM|(% style="width:591px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm") 784 +|(% style="width:122px" %)MONTH|(% style="width:591px" %)uppercase textual representation of the month (e.g., JANUARY for January) 785 +|(% style="width:122px" %)DAY|(% style="width:591px" %)uppercase textual representation of the day (e.g., MONDAY for Monday) 786 +|(% style="width:122px" %)Month|(% style="width:591px" %)lowercase textual representation of the month (e.g., january) 787 +|(% style="width:122px" %)Day|(% style="width:591px" %)lowercase textual representation of the month (e.g., monday) 788 +|(% style="width:122px" %)Month|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the month (e.g., January) 789 +|(% style="width:122px" %)Day|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 790 +|(% style="width:122px" %) |(% style="width:591px" %) 791 +|(% colspan="2" style="width:714px" %)String 792 +|(% style="width:122px" %)X|(% style="width:591px" %)any string character 793 +|(% style="width:122px" %)Z|(% style="width:591px" %)any string character from "A" to "z" 794 +|(% style="width:122px" %)9|(% style="width:591px" %)any string character from "0" to "9" 795 +|(% style="width:122px" %) |(% style="width:591px" %) 796 +|(% colspan="2" style="width:714px" %)Boolean 797 +|(% style="width:122px" %)B|(% style="width:591px" %)Boolean using "true" for True and "false" for False 798 +|(% style="width:122px" %)1|(% style="width:591px" %)Boolean using "1" for True and "0" for False 799 +|(% style="width:122px" %)0|(% style="width:591px" %)Boolean using "0" for True and "1" for False 800 +|(% style="width:122px" %) |(% style="width:591px" %) 801 +|(% colspan="2" style="width:714px" %)Other qualifiers 802 +|(% style="width:122px" %)*|(% style="width:591px" %)an arbitrary number of digits (of the preceding type) 803 +|(% style="width:122px" %)+|(% style="width:591px" %)at least one digit (of the preceding type) 804 +|(% style="width:122px" %)( )|(% style="width:591px" %)optional digits (specified within the brackets) 805 +|(% style="width:122px" %)\|(% style="width:591px" %)prefix for the special characters that must appear in the mask 806 +|(% style="width:122px" %)N|(% style="width:591px" %)fixed number of digits used in the preceding textual representation of the month or the day 807 +|(% style="width:122px" %) |(% style="width:591px" %) 814 814 815 815 The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 816 816
- 1750070288958-132.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.9 KB - Content
- 1750070310572-584.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content