Last modified by Artur on 2025/09/10 11:19

From version 1.18
edited by Helena
on 2025/06/16 13:24
Change comment: There is no comment for this version
To version 1.26
edited by Helena
on 2025/06/16 13:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -198,7 +198,7 @@
198 198  
199 199  The possible mapping options are described in more detail in the following sections.
200 200  
201 -=== 12.3.2 Mapping from SDMX to VTL data structures ===
201 +=== 12.3.3 Mapping from SDMX to VTL data structures ===
202 202  
203 203  ==== 12.3.3.1 Basic Mapping ====
204 204  
... ... @@ -206,11 +206,12 @@
206 206  
207 207  When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
208 208  
209 -|**SDMX**|**VTL**
210 -|Dimension|(Simple) Identifier
211 -|TimeDimension|(Time) Identifier
212 -|Measure|Measure
213 -|DataAttribute|Attribute
209 +(% style="width:468.294px" %)
210 +|(% style="width:196px" %)**SDMX**|(% style="width:269px" %)**VTL**
211 +|(% style="width:196px" %)Dimension|(% style="width:269px" %)(Simple) Identifier
212 +|(% style="width:196px" %)TimeDimension|(% style="width:269px" %)(Time) Identifier
213 +|(% style="width:196px" %)Measure|(% style="width:269px" %)Measure
214 +|(% style="width:196px" %)DataAttribute|(% style="width:269px" %)Attribute
214 214  
215 215  The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
216 216  
... ... @@ -220,10 +220,8 @@
220 220  
221 221  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
222 222  
223 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the
224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
224 224  
225 -MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
226 -
227 227  Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension.
228 228  
229 229  If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph).
... ... @@ -236,16 +236,18 @@
236 236  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
237 237  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
238 238  ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
239 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
239 +** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
240 240  
241 241  The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
242 242  
243 -|**SDMX**|**VTL**
244 -|Dimension|(Simple) Identifier
245 -|TimeDimension|(Time) Identifier
246 -|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension
247 -|DataAttribute not depending on the MeasureDimension|Attribute
248 -|DataAttribute depending on the MeasureDimension|(((
243 +(% style="width:739.294px" %)
244 +|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL**
245 +|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier
246 +|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier
247 +|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension
248 +|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute
249 +|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)(((
249 249  One Attribute for each Code of the
250 250  SDMX MeasureDimension
251 251  )))
... ... @@ -255,19 +255,14 @@
255 255  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
256 256  
257 257  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
259 -
260 -Identifiers, (time) Identifier and Attributes.
261 -
259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
262 262  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
263 263  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
264 264  
265 265  ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
266 266  
267 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
268 268  
269 -Attributes.
270 -
271 271  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
272 272  
273 273  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
... ... @@ -284,11 +284,12 @@
284 284  
285 285  Mapping table:
286 286  
287 -|**VTL**|**SDMX**
288 -|(Simple) Identifier|Dimension
289 -|(Time) Identifier|TimeDimension
290 -|Measure|Measure
291 -|Attribute|DataAttribute
283 +(% style="width:470.294px" %)
284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX**
285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension
286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension
287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure
288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute
292 292  
293 293  If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
294 294  
... ... @@ -316,11 +316,12 @@
316 316  
317 317  The summary mapping table of the **unpivot** mapping method is the following:
318 318  
319 -|**VTL**|**SDMX**
320 -|(Simple) Identifier|Dimension
321 -|(Time) Identifier|TimeDimension
322 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure
323 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
316 +(% style="width:638.294px" %)
317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX**
318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension
319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension
320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure
321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
324 324  
325 325  At observation / data point level:
326 326  
... ... @@ -342,12 +342,13 @@
342 342  
343 343  The mapping table is the following:
344 344  
345 -|VTL|SDMX
346 -|(Simple) Identifier|Dimension
347 -|(Time) Identifier|TimeDimension
348 -|Some Measures|Measure
349 -|Other Measures|DataAttribute
350 -|Attribute|DataAttribute
343 +(% style="width:467.294px" %)
344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX
345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension
346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension
347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure
348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute
349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute
351 351  
352 352  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
353 353  
... ... @@ -385,11 +385,11 @@
385 385  
386 386  Therefore, the generic name of this kind of VTL datasets would be:
387 387  
388 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
389 389  
390 390  Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be:
391 391  
392 -‘DF(1.0.0)/POPULATION.USA’
391 +> ‘DF(1.0.0)/POPULATION.USA’
393 393  
394 394  In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA.
395 395  
... ... @@ -403,26 +403,22 @@
403 403  
404 404  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
405 405  
406 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
407 407  
408 -basic, pivot …).
409 -
410 410  In the example above, for all the datasets of the kind
411 411  
412 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
413 413  
414 414  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
415 415  
416 -‘DF1(1.0.0)/POPULATION.USA’ :=
413 +> ‘DF1(1.0.0)/POPULATION.USA’ :=
414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
415 +>
416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ :=
417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
418 +>
419 +> … … …
417 417  
418 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
419 -
420 -‘DF1(1.0.0)/POPULATION.CANADA’ :=
421 -
422 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
423 -
424 -… … …
425 -
426 426  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
427 427  
428 428  In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
... ... @@ -431,10 +431,9 @@
431 431  
432 432  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
433 433  
434 -‘DF1(1.0.0)/POPULATION.’ :=
429 +> ‘DF1(1.0.0)/POPULATION.’ :=
430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
435 435  
436 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
437 -
438 438  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
439 439  
440 440  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations.
... ... @@ -452,41 +452,38 @@
452 452  
453 453  The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
454 454  
455 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
456 456  
457 457  Some examples follow, for some specific values of INDICATOR and COUNTRY:
458 458  
459 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
460 -… … …
453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
454 +> … … …
455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
457 +> … … …
461 461  
462 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
463 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
464 -… … …
465 -
466 466  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
467 467  
468 468  VTL dataset   INDICATOR value COUNTRY value
469 469  
470 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
471 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
472 -‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
473 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
465 +> ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
466 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
467 +> … … …
474 474  
475 -… … …
476 -
477 477  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
478 478  
479 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
480 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
481 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
482 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
483 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
484 -DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
485 -DF2bis_GDPPERCAPITA_CANADA’,
486 -… ,
487 -DF2bis_POPGROWTH_USA’,
488 -DF2bis_POPGROWTH_CANADA’
489 -…);
471 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
472 +> DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
473 +> DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
474 +> DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
475 +> DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
476 +> DF2bis_GDPPERCAPITA_CANADA’,
477 +> … ,
478 +> DF2bis_POPGROWTH_USA’,
479 +> DF2bis_POPGROWTH_CANADA’
480 +> …);
490 490  
491 491  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
492 492  
... ... @@ -498,25 +498,26 @@
498 498  
499 499  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
500 500  
501 -|VTL|SDMX
502 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
503 -|**Represented Variable**|**Concept** with a definite Representation
504 -|**Value Domain**|(((
492 +(% style="width:706.294px" %)
493 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX
494 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
495 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation
496 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)(((
505 505  **Representation** (see the Structure
506 506  Pattern in the Base Package)
507 507  )))
508 -|**Enumerated Value Domain / Code List**|**Codelist**
509 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
510 -|**Described Value Domain**|(((
500 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist**
501 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
502 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)(((
511 511  non-enumerated** Representation**
512 512  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
513 513  )))
514 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
515 -| |to a valid **value **(for non-enumerated** **Representations)
516 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
517 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
518 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
519 -|**Set list**|This abstraction does not exist in SDMX
506 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
507 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations)
508 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
509 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
510 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
511 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX
520 520  
521 521  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
522 522  
... ... @@ -524,8 +524,10 @@
524 524  
525 525  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
526 526  
527 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
519 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
528 528  
521 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
522 +
529 529  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
530 530  
531 531  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
... ... @@ -540,8 +540,9 @@
540 540  
541 541  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
542 542  
543 -[[image:1750067055028-964.png]]
544 544  
538 +[[image:1750070288958-132.png]]
539 +
545 545  **Figure 22 – VTL Data Types**
546 546  
547 547  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
... ... @@ -548,6 +548,8 @@
548 548  
549 549  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
550 550  
546 +[[image:1750070310572-584.png]]
547 +
551 551  **Figure 23 – VTL Basic Scalar Types**
552 552  
553 553  === 12.4.2 VTL basic scalar types and SDMX data types ===
... ... @@ -572,158 +572,157 @@
572 572  
573 573  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
574 574  
575 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
576 -|(((
572 +(% style="width:583.294px" %)
573 +|(% style="width:360px" %)SDMX data type (BasicComponentDataType)|(% style="width:221px" %)Default VTL basic scalar type
574 +|(% style="width:360px" %)(((
577 577  String
578 578  (string allowing any character)
579 -)))|string
580 -|(((
581 -Alpha 
582 -
577 +)))|(% style="width:221px" %)string
578 +|(% style="width:360px" %)(((
579 +Alpha
583 583  (string which only allows A-z)
584 -)))|string
585 -|(((
581 +)))|(% style="width:221px" %)string
582 +|(% style="width:360px" %)(((
586 586  AlphaNumeric
587 587  (string which only allows A-z and 0-9)
588 -)))|string
589 -|(((
585 +)))|(% style="width:221px" %)string
586 +|(% style="width:360px" %)(((
590 590  Numeric
591 -
592 592  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
593 -)))|string
594 -|(((
589 +)))|(% style="width:221px" %)string
590 +|(% style="width:360px" %)(((
595 595  BigInteger
596 596  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
597 -)))|integer
598 -|(((
593 +)))|(% style="width:221px" %)integer
594 +|(% style="width:360px" %)(((
599 599  Integer
600 600  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
601 601  (inclusive))
602 -)))|integer
603 -|(((
598 +)))|(% style="width:221px" %)integer
599 +|(% style="width:360px" %)(((
604 604  Long
605 605  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
606 606  +9223372036854775807 (inclusive))
607 -)))|integer
608 -|(((
603 +)))|(% style="width:221px" %)integer
604 +|(% style="width:360px" %)(((
609 609  Short
610 610  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
611 -)))|integer
612 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
613 -|(((
607 +)))|(% style="width:221px" %)integer
608 +|(% style="width:360px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:221px" %)number
609 +|(% style="width:360px" %)(((
614 614  Float
615 615  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
616 -)))|number
617 -|(((
612 +)))|(% style="width:221px" %)number
613 +|(% style="width:360px" %)(((
618 618  Double
619 619  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
620 -)))|number
621 -|(((
616 +)))|(% style="width:221px" %)number
617 +|(% style="width:360px" %)(((
622 622  Boolean
623 623  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
624 624  binary-valued logic: {true, false})
625 -)))|boolean
626 -|(((
621 +)))|(% style="width:221px" %)boolean
622 +|(% style="width:360px" %)(((
627 627  URI
628 628  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
629 -)))|string
630 -|(((
625 +)))|(% style="width:221px" %)string
626 +|(% style="width:360px" %)(((
631 631  Count
632 632  (an integer following a sequential pattern, increasing by 1 for each occurrence)
633 -)))|integer
634 -|(((
629 +)))|(% style="width:221px" %)integer
630 +|(% style="width:360px" %)(((
635 635  InclusiveValueRange
636 636  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
637 -)))|number
638 -|(((
633 +)))|(% style="width:221px" %)number
634 +|(% style="width:360px" %)(((
639 639  ExclusiveValueRange
640 640  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
641 -)))|number
642 -|(((
637 +)))|(% style="width:221px" %)number
638 +|(% style="width:360px" %)(((
643 643  Incremental
644 644  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
645 -)))|number
646 -|(((
641 +)))|(% style="width:221px" %)number
642 +|(% style="width:360px" %)(((
647 647  ObservationalTimePeriod
648 648  (superset of StandardTimePeriod and TimeRange)
649 -)))|time
650 -|(((
645 +)))|(% style="width:221px" %)time
646 +|(% style="width:360px" %)(((
651 651  StandardTimePeriod
652 652  (superset of BasicTimePeriod and ReportingTimePeriod)
653 -)))|time
654 -|(((
649 +)))|(% style="width:221px" %)time
650 +|(% style="width:360px" %)(((
655 655  BasicTimePeriod
656 656  (superset of GregorianTimePeriod and DateTime)
657 -)))|date
658 -|(((
653 +)))|(% style="width:221px" %)date
654 +|(% style="width:360px" %)(((
659 659  GregorianTimePeriod
660 660  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
661 -)))|date
662 -|GregorianYear (YYYY)|date
663 -|GregorianYearMonth / GregorianMonth (YYYY-MM)|date
664 -|GregorianDay (YYYY-MM-DD)|date
665 -|(((
657 +)))|(% style="width:221px" %)date
658 +|(% style="width:360px" %)GregorianYear (YYYY)|(% style="width:221px" %)date
659 +|(% style="width:360px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% style="width:221px" %)date
660 +|(% style="width:360px" %)GregorianDay (YYYY-MM-DD)|(% style="width:221px" %)date
661 +|(% style="width:360px" %)(((
666 666  ReportingTimePeriod
667 667  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
668 -)))|time_period
669 -|(((
664 +)))|(% style="width:221px" %)time_period
665 +|(% style="width:360px" %)(((
670 670  ReportingYear
671 671  (YYYY-A1 – 1 year period)
672 -)))|time_period
673 -|(((
668 +)))|(% style="width:221px" %)time_period
669 +|(% style="width:360px" %)(((
674 674  ReportingSemester
675 675  (YYYY-Ss – 6 month period)
676 -)))|time_period
677 -|(((
672 +)))|(% style="width:221px" %)time_period
673 +|(% style="width:360px" %)(((
678 678  ReportingTrimester
679 679  (YYYY-Tt – 4 month period)
680 -)))|time_period
681 -|(((
676 +)))|(% style="width:221px" %)time_period
677 +|(% style="width:360px" %)(((
682 682  ReportingQuarter
683 683  (YYYY-Qq – 3 month period)
684 -)))|time_period
685 -|(((
680 +)))|(% style="width:221px" %)time_period
681 +|(% style="width:360px" %)(((
686 686  ReportingMonth
687 687  (YYYY-Mmm – 1 month period)
688 -)))|time_period
689 -|ReportingWeek|time_period
690 -| (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
691 -|(((
684 +)))|(% style="width:221px" %)time_period
685 +|(% style="width:360px" %)ReportingWeek|(% style="width:221px" %)time_period
686 +|(% style="width:360px" %) (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% style="width:221px" %)
687 +|(% style="width:360px" %)(((
692 692  ReportingDay
693 693  (YYYY-Dddd – 1 day period)
694 -)))|time_period
695 -|(((
690 +)))|(% style="width:221px" %)time_period
691 +|(% style="width:360px" %)(((
696 696  DateTime
697 697  (YYYY-MM-DDThh:mm:ss)
698 -)))|date
699 -|(((
694 +)))|(% style="width:221px" %)date
695 +|(% style="width:360px" %)(((
700 700  TimeRange
701 701  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
702 -)))|time
703 -|(((
698 +)))|(% style="width:221px" %)time
699 +|(% style="width:360px" %)(((
704 704  Month
705 705  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
706 -)))|string
707 -|(((
702 +)))|(% style="width:221px" %)string
703 +|(% style="width:360px" %)(((
708 708  MonthDay
709 709  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
710 -)))|string
711 -|(((
706 +)))|(% style="width:221px" %)string
707 +|(% style="width:360px" %)(((
712 712  Day
713 713  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
714 -)))|string
715 -|(((
710 +)))|(% style="width:221px" %)string
711 +|(% style="width:360px" %)(((
716 716  Time
717 717  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
718 -)))|string
719 -|(((
714 +)))|(% style="width:221px" %)string
715 +|(% style="width:360px" %)(((
720 720  Duration
721 721  (corresponds to XML Schema xs:duration datatype)
722 -)))|duration
723 -|XHTML|Metadata type – not applicable
724 -|KeyValues|Metadata type – not applicable
725 -|IdentifiableReference|Metadata type – not applicable
726 -|DataSetReference|Metadata type – not applicable
718 +)))|(% style="width:221px" %)duration
719 +|(% style="width:360px" %)XHTML|(% style="width:221px" %)Metadata type – not applicable
720 +|(% style="width:360px" %)KeyValues|(% style="width:221px" %)Metadata type – not applicable
721 +|(% style="width:360px" %)IdentifiableReference|(% style="width:221px" %)Metadata type – not applicable
722 +|(% style="width:360px" %)DataSetReference|(% style="width:221px" %)Metadata type – not applicable
727 727  
728 728  **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
729 729  
... ... @@ -733,84 +733,82 @@
733 733  
734 734  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
735 735  
736 -|(((
737 -VTL basic
738 -scalar type
739 -)))|(((
732 +(% style="width:748.294px" %)
733 +|(% style="width:164px" %)(((
734 +VTL basic scalar type
735 +)))|(% style="width:304px" %)(((
740 740  Default SDMX data type
741 -(BasicComponentDataType
742 -)
743 -)))|Default output format
744 -|String|String|Like XML (xs:string)
745 -|Number|Float|Like XML (xs:float)
746 -|Integer|Integer|Like XML (xs:int)
747 -|Date|DateTime|YYYY-MM-DDT00:00:00Z
748 -|Time|StandardTimePeriod|<date>/<date> (as defined above)
749 -|time_period|(((
737 +(BasicComponentDataType)
738 +)))|(% style="width:277px" %)Default output format
739 +|(% style="width:164px" %)String|(% style="width:304px" %)String|(% style="width:277px" %)Like XML (xs:string)
740 +|(% style="width:164px" %)Number|(% style="width:304px" %)Float|(% style="width:277px" %)Like XML (xs:float)
741 +|(% style="width:164px" %)Integer|(% style="width:304px" %)Integer|(% style="width:277px" %)Like XML (xs:int)
742 +|(% style="width:164px" %)Date|(% style="width:304px" %)DateTime|(% style="width:277px" %)YYYY-MM-DDT00:00:00Z
743 +|(% style="width:164px" %)Time|(% style="width:304px" %)StandardTimePeriod|(% style="width:277px" %)<date>/<date> (as defined above)
744 +|(% style="width:164px" %)time_period|(% style="width:304px" %)(((
750 750  ReportingTimePeriod
751 751  (StandardReportingPeriod)
752 -)))|(((
747 +)))|(% style="width:277px" %)(((
753 753   YYYY-Pppp
754 754  (according to SDMX )
755 755  )))
756 -|Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
757 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
751 +|(% style="width:164px" %)Duration|(% style="width:304px" %)Duration|(% style="width:277px" %)Like XML (xs:duration) PnYnMnDTnHnMnS
752 +|(% style="width:164px" %)Boolean|(% style="width:304px" %)Boolean|(% style="width:277px" %)Like XML (xs:boolean) with the values "true" or "false"
758 758  
759 759  **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
760 760  
761 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
756 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
762 762  
763 -Transformations and Expressions of the SDMX information model).
764 -
765 765  The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table.
766 766  
767 -|(% colspan="2" %)VTL special characters for the formatting masks
768 -|(% colspan="2" %)
769 -|(% colspan="2" %)Number
770 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
771 -|E|one numeric digit (for the exponent of the scientific notation)
772 -|. (dot)|possible separator between the integer and the decimal parts.
773 -|, (comma)|possible separator between the integer and the decimal parts.
774 -| |
775 -|(% colspan="2" %)Time and duration
776 -|C|century
777 -|Y|year
778 -|S|semester
779 -|Q|quarter
780 -|M|month
781 -|W|week
782 -|D|day
783 -|h|hour digit (by default on 24 hours)
784 -|M|minute
785 -|S|second
786 -|D|decimal of second
787 -|P|period indicator (representation in one digit for the duration)
788 -|P|number of the periods specified in the period indicator
789 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm")
790 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January)
791 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday)
792 -|Month|lowercase textual representation of the month (e.g., january)
793 -|Day|lowercase textual representation of the month (e.g., monday)
794 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January)
795 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
796 -| |
797 -|(% colspan="2" %)String
798 -|X|any string character
799 -|Z|any string character from "A" to "z"
800 -|9|any string character from "0" to "9"
801 -| |
802 -|(% colspan="2" %)Boolean
803 -|B|Boolean using "true" for True and "false" for False
804 -|1|Boolean using "1" for True and "0" for False
805 -|0|Boolean using "0" for True and "1" for False
806 -| |
807 -|(% colspan="2" %)Other qualifiers
808 -|*|an arbitrary number of digits (of the preceding type)
809 -|+|at least one digit (of the preceding type)
810 -|( )|optional digits (specified within the brackets)
811 -|\|prefix for the special characters that must appear in the mask
812 -|N|fixed number of digits used in the preceding textual representation of the month or the day
813 -| |
760 +(% style="width:717.294px" %)
761 +|(% colspan="2" style="width:714px" %)VTL special characters for the formatting masks
762 +|(% colspan="2" style="width:714px" %)
763 +|(% colspan="2" style="width:714px" %)Number
764 +|(% style="width:122px" %)D|(% style="width:591px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
765 +|(% style="width:122px" %)E|(% style="width:591px" %)one numeric digit (for the exponent of the scientific notation)
766 +|(% style="width:122px" %). (dot)|(% style="width:591px" %)possible separator between the integer and the decimal parts.
767 +|(% style="width:122px" %), (comma)|(% style="width:591px" %)possible separator between the integer and the decimal parts.
768 +|(% style="width:122px" %) |(% style="width:591px" %)
769 +|(% colspan="2" style="width:714px" %)Time and duration
770 +|(% style="width:122px" %)C|(% style="width:591px" %)century
771 +|(% style="width:122px" %)Y|(% style="width:591px" %)year
772 +|(% style="width:122px" %)S|(% style="width:591px" %)semester
773 +|(% style="width:122px" %)Q|(% style="width:591px" %)quarter
774 +|(% style="width:122px" %)M|(% style="width:591px" %)month
775 +|(% style="width:122px" %)W|(% style="width:591px" %)week
776 +|(% style="width:122px" %)D|(% style="width:591px" %)day
777 +|(% style="width:122px" %)h|(% style="width:591px" %)hour digit (by default on 24 hours)
778 +|(% style="width:122px" %)M|(% style="width:591px" %)minute
779 +|(% style="width:122px" %)S|(% style="width:591px" %)second
780 +|(% style="width:122px" %)D|(% style="width:591px" %)decimal of second
781 +|(% style="width:122px" %)P|(% style="width:591px" %)period indicator (representation in one digit for the duration)
782 +|(% style="width:122px" %)P|(% style="width:591px" %)number of the periods specified in the period indicator
783 +|(% style="width:122px" %)AM/PM|(% style="width:591px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm")
784 +|(% style="width:122px" %)MONTH|(% style="width:591px" %)uppercase textual representation of the month (e.g., JANUARY for January)
785 +|(% style="width:122px" %)DAY|(% style="width:591px" %)uppercase textual representation of the day (e.g., MONDAY for Monday)
786 +|(% style="width:122px" %)Month|(% style="width:591px" %)lowercase textual representation of the month (e.g., january)
787 +|(% style="width:122px" %)Day|(% style="width:591px" %)lowercase textual representation of the month (e.g., monday)
788 +|(% style="width:122px" %)Month|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the month (e.g., January)
789 +|(% style="width:122px" %)Day|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
790 +|(% style="width:122px" %) |(% style="width:591px" %)
791 +|(% colspan="2" style="width:714px" %)String
792 +|(% style="width:122px" %)X|(% style="width:591px" %)any string character
793 +|(% style="width:122px" %)Z|(% style="width:591px" %)any string character from "A" to "z"
794 +|(% style="width:122px" %)9|(% style="width:591px" %)any string character from "0" to "9"
795 +|(% style="width:122px" %) |(% style="width:591px" %)
796 +|(% colspan="2" style="width:714px" %)Boolean
797 +|(% style="width:122px" %)B|(% style="width:591px" %)Boolean using "true" for True and "false" for False
798 +|(% style="width:122px" %)1|(% style="width:591px" %)Boolean using "1" for True and "0" for False
799 +|(% style="width:122px" %)0|(% style="width:591px" %)Boolean using "0" for True and "1" for False
800 +|(% style="width:122px" %) |(% style="width:591px" %)
801 +|(% colspan="2" style="width:714px" %)Other qualifiers
802 +|(% style="width:122px" %)*|(% style="width:591px" %)an arbitrary number of digits (of the preceding type)
803 +|(% style="width:122px" %)+|(% style="width:591px" %)at least one digit (of the preceding type)
804 +|(% style="width:122px" %)( )|(% style="width:591px" %)optional digits (specified within the brackets)
805 +|(% style="width:122px" %)\|(% style="width:591px" %)prefix for the special characters that must appear in the mask
806 +|(% style="width:122px" %)N|(% style="width:591px" %)fixed number of digits used in the preceding textual representation of the month or the day
807 +|(% style="width:122px" %) |(% style="width:591px" %)
814 814  
815 815  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
816 816  
1750070288958-132.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +45.9 KB
Content
1750070310572-584.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content