Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -198,7 +198,7 @@ 198 198 199 199 The possible mapping options are described in more detail in the following sections. 200 200 201 -=== 12.3. 2Mapping from SDMX to VTL data structures ===201 +=== 12.3.3 Mapping from SDMX to VTL data structures === 202 202 203 203 ==== 12.3.3.1 Basic Mapping ==== 204 204 ... ... @@ -221,10 +221,8 @@ 221 221 222 222 An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD. 223 223 224 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the 224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}. 225 225 226 -MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}. 227 - 228 228 Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension. 229 229 230 230 If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph). ... ... @@ -237,16 +237,18 @@ 237 237 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 238 238 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 239 239 ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 240 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 239 +** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 241 241 242 242 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 243 243 244 -|**SDMX**|**VTL** 245 -|Dimension|(Simple) Identifier 246 -|TimeDimension|(Time) Identifier 247 -|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension 248 -|DataAttribute not depending on the MeasureDimension|Attribute 249 -|DataAttribute depending on the MeasureDimension|((( 243 +(% style="width:739.294px" %) 244 +|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL** 245 +|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier 246 +|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier 247 +|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension 248 +|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute 249 +|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)((( 250 250 One Attribute for each Code of the 251 251 SDMX MeasureDimension 252 252 ))) ... ... @@ -256,19 +256,14 @@ 256 256 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 257 257 258 258 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 259 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 260 - 261 -Identifiers, (time) Identifier and Attributes. 262 - 259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 263 263 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 264 264 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 265 265 266 266 ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ==== 267 267 268 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 269 269 270 -Attributes. 271 - 272 272 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. 273 273 274 274 Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures. ... ... @@ -285,11 +285,12 @@ 285 285 286 286 Mapping table: 287 287 288 -|**VTL**|**SDMX** 289 -|(Simple) Identifier|Dimension 290 -|(Time) Identifier|TimeDimension 291 -|Measure|Measure 292 -|Attribute|DataAttribute 283 +(% style="width:470.294px" %) 284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX** 285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension 286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension 287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure 288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute 293 293 294 294 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 295 295 ... ... @@ -317,11 +317,12 @@ 317 317 318 318 The summary mapping table of the **unpivot** mapping method is the following: 319 319 320 -|**VTL**|**SDMX** 321 -|(Simple) Identifier|Dimension 322 -|(Time) Identifier|TimeDimension 323 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 324 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 316 +(% style="width:638.294px" %) 317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX** 318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension 319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension 320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 325 325 326 326 At observation / data point level: 327 327 ... ... @@ -343,12 +343,13 @@ 343 343 344 344 The mapping table is the following: 345 345 346 -|VTL|SDMX 347 -|(Simple) Identifier|Dimension 348 -|(Time) Identifier|TimeDimension 349 -|Some Measures|Measure 350 -|Other Measures|DataAttribute 351 -|Attribute|DataAttribute 343 +(% style="width:467.294px" %) 344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX 345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension 346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension 347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure 348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute 349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute 352 352 353 353 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 354 354 ... ... @@ -386,11 +386,11 @@ 386 386 387 387 Therefore, the generic name of this kind of VTL datasets would be: 388 388 389 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 390 390 391 391 Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be: 392 392 393 -‘DF(1.0.0)/POPULATION.USA’ 391 +> ‘DF(1.0.0)/POPULATION.USA’ 394 394 395 395 In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA. 396 396 ... ... @@ -404,26 +404,22 @@ 404 404 405 405 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 406 406 407 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 408 408 409 -basic, pivot …). 410 - 411 411 In the example above, for all the datasets of the kind 412 412 413 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 414 414 415 415 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 416 416 417 -‘DF1(1.0.0)/POPULATION.USA’ := 413 +> ‘DF1(1.0.0)/POPULATION.USA’ := 414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 415 +> 416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ := 417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 418 +> 419 +> … … … 418 418 419 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 420 - 421 -‘DF1(1.0.0)/POPULATION.CANADA’ := 422 - 423 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 424 - 425 -… … … 426 - 427 427 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} 428 428 429 429 In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. ... ... @@ -432,10 +432,9 @@ 432 432 433 433 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 434 434 435 -‘DF1(1.0.0)/POPULATION.’ := 429 +> ‘DF1(1.0.0)/POPULATION.’ := 430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 436 436 437 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 438 - 439 439 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 440 440 441 441 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations. ... ... @@ -453,41 +453,38 @@ 453 453 454 454 The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}} 455 455 456 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 457 457 458 458 Some examples follow, for some specific values of INDICATOR and COUNTRY: 459 459 460 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 461 -… … … 453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 454 +> … … … 455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 457 +> … … … 462 462 463 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 464 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 465 -… … … 466 - 467 467 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 468 468 469 469 VTL dataset INDICATOR value COUNTRY value 470 470 471 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 472 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 473 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 474 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 465 +> ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 466 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 467 +> … … … 475 475 476 -… … … 477 - 478 478 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 479 479 480 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 481 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 482 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 483 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 484 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 485 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 486 -DF2bis_GDPPERCAPITA_CANADA’, 487 -… , 488 -DF2bis_POPGROWTH_USA’, 489 -DF2bis_POPGROWTH_CANADA’ 490 -…); 471 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 472 +> DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 473 +> DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 474 +> DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 475 +> DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 476 +> DF2bis_GDPPERCAPITA_CANADA’, 477 +> … , 478 +> DF2bis_POPGROWTH_USA’, 479 +> DF2bis_POPGROWTH_CANADA’ 480 +> …); 491 491 492 492 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 493 493 ... ... @@ -499,25 +499,26 @@ 499 499 500 500 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 501 501 502 -|VTL|SDMX 503 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 504 -|**Represented Variable**|**Concept** with a definite Representation 505 -|**Value Domain**|((( 492 +(% style="width:706.294px" %) 493 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX 494 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 495 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation 496 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)((( 506 506 **Representation** (see the Structure 507 507 Pattern in the Base Package) 508 508 ))) 509 -|**Enumerated Value Domain / Code List**|**Codelist** 510 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 511 -|**Described Value Domain**|((( 500 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist** 501 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 502 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)((( 512 512 non-enumerated** Representation** 513 513 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 514 514 ))) 515 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 516 -| |to a valid **value **(for non-enumerated** **Representations) 517 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 518 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 519 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 520 -|**Set list**|This abstraction does not exist in SDMX 506 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 507 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations) 508 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 509 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 510 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 511 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX 521 521 522 522 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 523 523 ... ... @@ -525,8 +525,10 @@ 525 525 526 526 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 527 527 528 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.519 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 529 529 521 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 522 + 530 530 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 531 531 532 532 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -541,8 +541,9 @@ 541 541 542 542 The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual: 543 543 544 -[[image:1750067055028-964.png]] 545 545 538 +[[image:1750070288958-132.png]] 539 + 546 546 **Figure 22 – VTL Data Types** 547 547 548 548 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
- 1750070288958-132.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.9 KB - Content