Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,7 +18,7 @@ 18 18 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 -== 12.2 References to SDMX artefacts from VTL statements ==21 +== 12.2 References to SDMX artefacts from VTL statements == 22 22 23 23 === 12.2.1 Introduction === 24 24 ... ... @@ -116,7 +116,7 @@ 116 116 117 117 by omitting all the non-essential parts would become simply: 118 118 119 -> DFR : =DF1 + DF2119 +> DFR : = DF1 + DF2 120 120 121 121 The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}: 122 122 ... ... @@ -235,16 +235,18 @@ 235 235 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 236 236 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 237 237 ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 238 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 239 +** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 239 239 240 240 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 241 241 242 -|**SDMX**|**VTL** 243 -|Dimension|(Simple) Identifier 244 -|TimeDimension|(Time) Identifier 245 -|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension 246 -|DataAttribute not depending on the MeasureDimension|Attribute 247 -|DataAttribute depending on the MeasureDimension|((( 243 +(% style="width:739.294px" %) 244 +|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL** 245 +|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier 246 +|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier 247 +|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension 248 +|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute 249 +|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)((( 248 248 One Attribute for each Code of the 249 249 SDMX MeasureDimension 250 250 ))) ... ... @@ -254,19 +254,14 @@ 254 254 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 255 255 256 256 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 257 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 258 - 259 -Identifiers, (time) Identifier and Attributes. 260 - 259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 261 261 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 262 262 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 263 263 264 264 ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ==== 265 265 266 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 267 267 268 -Attributes. 269 - 270 270 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. 271 271 272 272 Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures. ... ... @@ -283,11 +283,12 @@ 283 283 284 284 Mapping table: 285 285 286 -|**VTL**|**SDMX** 287 -|(Simple) Identifier|Dimension 288 -|(Time) Identifier|TimeDimension 289 -|Measure|Measure 290 -|Attribute|DataAttribute 283 +(% style="width:470.294px" %) 284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX** 285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension 286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension 287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure 288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute 291 291 292 292 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 293 293 ... ... @@ -315,11 +315,12 @@ 315 315 316 316 The summary mapping table of the **unpivot** mapping method is the following: 317 317 318 -|**VTL**|**SDMX** 319 -|(Simple) Identifier|Dimension 320 -|(Time) Identifier|TimeDimension 321 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 322 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 316 +(% style="width:638.294px" %) 317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX** 318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension 319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension 320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 323 323 324 324 At observation / data point level: 325 325 ... ... @@ -341,12 +341,13 @@ 341 341 342 342 The mapping table is the following: 343 343 344 -|VTL|SDMX 345 -|(Simple) Identifier|Dimension 346 -|(Time) Identifier|TimeDimension 347 -|Some Measures|Measure 348 -|Other Measures|DataAttribute 349 -|Attribute|DataAttribute 343 +(% style="width:467.294px" %) 344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX 345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension 346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension 347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure 348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute 349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute 350 350 351 351 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 352 352 ... ... @@ -384,11 +384,11 @@ 384 384 385 385 Therefore, the generic name of this kind of VTL datasets would be: 386 386 387 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 388 388 389 389 Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be: 390 390 391 -‘DF(1.0.0)/POPULATION.USA’ 391 +> ‘DF(1.0.0)/POPULATION.USA’ 392 392 393 393 In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA. 394 394 ... ... @@ -402,26 +402,22 @@ 402 402 403 403 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 404 404 405 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 406 406 407 -basic, pivot …). 408 - 409 409 In the example above, for all the datasets of the kind 410 410 411 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 412 412 413 413 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 414 414 415 -‘DF1(1.0.0)/POPULATION.USA’ := 413 +> ‘DF1(1.0.0)/POPULATION.USA’ := 414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 415 +> 416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ := 417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 418 +> 419 +> … … … 416 416 417 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 418 - 419 -‘DF1(1.0.0)/POPULATION.CANADA’ := 420 - 421 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 422 - 423 -… … … 424 - 425 425 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} 426 426 427 427 In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. ... ... @@ -430,10 +430,9 @@ 430 430 431 431 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 432 432 433 -‘DF1(1.0.0)/POPULATION.’ := 429 +> ‘DF1(1.0.0)/POPULATION.’ := 430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 434 434 435 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 436 - 437 437 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 438 438 439 439 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations. ... ... @@ -451,41 +451,33 @@ 451 451 452 452 The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}} 453 453 454 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 455 455 456 456 Some examples follow, for some specific values of INDICATOR and COUNTRY: 457 457 458 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 459 -… … … 453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 454 +> … … … 455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 457 +> … … … 460 460 461 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 462 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 463 -… … … 464 - 465 465 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 466 466 467 -VTL dataset INDICATOR value COUNTRY value 461 +> VTL dataset INDICATOR value COUNTRY value 462 +> 463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 465 +> 466 +> ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 467 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 468 +> … … … 468 468 469 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 470 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 471 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 472 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 473 - 474 -… … … 475 - 476 476 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 477 477 478 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 479 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 480 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 481 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 482 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 483 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 484 -DF2bis_GDPPERCAPITA_CANADA’, 485 -… , 486 -DF2bis_POPGROWTH_USA’, 487 -DF2bis_POPGROWTH_CANADA’ 488 -…); 472 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”];… … … DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”];… … … DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, DF2bis_GDPPERCAPITA_CANADA’, 473 +> … , 474 +> DF2bis_POPGROWTH_USA’, DF2bis_POPGROWTH_CANADA’ 475 +> …); 489 489 490 490 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 491 491 ... ... @@ -497,25 +497,26 @@ 497 497 498 498 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 499 499 500 -|VTL|SDMX 501 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 502 -|**Represented Variable**|**Concept** with a definite Representation 503 -|**Value Domain**|((( 487 +(% style="width:706.294px" %) 488 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX 489 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 490 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation 491 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)((( 504 504 **Representation** (see the Structure 505 505 Pattern in the Base Package) 506 506 ))) 507 -|**Enumerated Value Domain / Code List**|**Codelist** 508 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 509 -|**Described Value Domain**|((( 495 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist** 496 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 497 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)((( 510 510 non-enumerated** Representation** 511 511 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 512 512 ))) 513 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 514 -| |to a valid **value **(for non-enumerated** **Representations) 515 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 516 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 517 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 518 -|**Set list**|This abstraction does not exist in SDMX 501 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 502 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations) 503 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 504 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 505 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 506 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX 519 519 520 520 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 521 521 ... ... @@ -523,8 +523,10 @@ 523 523 524 524 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 525 525 526 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.514 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 527 527 516 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 517 + 528 528 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 529 529 530 530 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -539,8 +539,9 @@ 539 539 540 540 The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual: 541 541 542 -[[image:1750067055028-964.png]] 543 543 533 +[[image:1750070288958-132.png]] 534 + 544 544 **Figure 22 – VTL Data Types** 545 545 546 546 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. ... ... @@ -547,6 +547,8 @@ 547 547 548 548 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 549 549 541 +[[image:1750070310572-584.png]] 542 + 550 550 **Figure 23 – VTL Basic Scalar Types** 551 551 552 552 === 12.4.2 VTL basic scalar types and SDMX data types === ... ... @@ -571,158 +571,157 @@ 571 571 572 572 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 573 573 574 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 575 -|((( 567 +(% style="width:583.294px" %) 568 +|(% style="width:360px" %)SDMX data type (BasicComponentDataType)|(% style="width:221px" %)Default VTL basic scalar type 569 +|(% style="width:360px" %)((( 576 576 String 577 577 (string allowing any character) 578 -)))|string 579 -|((( 580 -Alpha 581 - 572 +)))|(% style="width:221px" %)string 573 +|(% style="width:360px" %)((( 574 +Alpha 582 582 (string which only allows A-z) 583 -)))|string 584 -|((( 576 +)))|(% style="width:221px" %)string 577 +|(% style="width:360px" %)((( 585 585 AlphaNumeric 586 586 (string which only allows A-z and 0-9) 587 -)))|string 588 -|((( 580 +)))|(% style="width:221px" %)string 581 +|(% style="width:360px" %)((( 589 589 Numeric 590 - 591 591 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 592 -)))|string 593 -|((( 584 +)))|(% style="width:221px" %)string 585 +|(% style="width:360px" %)((( 594 594 BigInteger 595 595 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 596 -)))|integer 597 -|((( 588 +)))|(% style="width:221px" %)integer 589 +|(% style="width:360px" %)((( 598 598 Integer 599 599 (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 600 600 (inclusive)) 601 -)))|integer 602 -|((( 593 +)))|(% style="width:221px" %)integer 594 +|(% style="width:360px" %)((( 603 603 Long 604 604 (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 605 605 +9223372036854775807 (inclusive)) 606 -)))|integer 607 -|((( 598 +)))|(% style="width:221px" %)integer 599 +|(% style="width:360px" %)((( 608 608 Short 609 609 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 610 -)))|integer 611 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 612 -|((( 602 +)))|(% style="width:221px" %)integer 603 +|(% style="width:360px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:221px" %)number 604 +|(% style="width:360px" %)((( 613 613 Float 614 614 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 615 -)))|number 616 -|((( 607 +)))|(% style="width:221px" %)number 608 +|(% style="width:360px" %)((( 617 617 Double 618 618 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 619 -)))|number 620 -|((( 611 +)))|(% style="width:221px" %)number 612 +|(% style="width:360px" %)((( 621 621 Boolean 622 622 (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 623 623 binary-valued logic: {true, false}) 624 -)))|boolean 625 -|((( 616 +)))|(% style="width:221px" %)boolean 617 +|(% style="width:360px" %)((( 626 626 URI 627 627 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 628 -)))|string 629 -|((( 620 +)))|(% style="width:221px" %)string 621 +|(% style="width:360px" %)((( 630 630 Count 631 631 (an integer following a sequential pattern, increasing by 1 for each occurrence) 632 -)))|integer 633 -|((( 624 +)))|(% style="width:221px" %)integer 625 +|(% style="width:360px" %)((( 634 634 InclusiveValueRange 635 635 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 636 -)))|number 637 -|((( 628 +)))|(% style="width:221px" %)number 629 +|(% style="width:360px" %)((( 638 638 ExclusiveValueRange 639 639 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 640 -)))|number 641 -|((( 632 +)))|(% style="width:221px" %)number 633 +|(% style="width:360px" %)((( 642 642 Incremental 643 643 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 644 -)))|number 645 -|((( 636 +)))|(% style="width:221px" %)number 637 +|(% style="width:360px" %)((( 646 646 ObservationalTimePeriod 647 647 (superset of StandardTimePeriod and TimeRange) 648 -)))|time 649 -|((( 640 +)))|(% style="width:221px" %)time 641 +|(% style="width:360px" %)((( 650 650 StandardTimePeriod 651 651 (superset of BasicTimePeriod and ReportingTimePeriod) 652 -)))|time 653 -|((( 644 +)))|(% style="width:221px" %)time 645 +|(% style="width:360px" %)((( 654 654 BasicTimePeriod 655 655 (superset of GregorianTimePeriod and DateTime) 656 -)))|date 657 -|((( 648 +)))|(% style="width:221px" %)date 649 +|(% style="width:360px" %)((( 658 658 GregorianTimePeriod 659 659 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 660 -)))|date 661 -|GregorianYear (YYYY)|date662 -|GregorianYearMonth / GregorianMonth (YYYY-MM)|date 663 -|GregorianDay (YYYY-MM-DD)|date 664 -|((( 652 +)))|(% style="width:221px" %)date 653 +|(% style="width:360px" %)GregorianYear (YYYY)|(% style="width:221px" %)date 654 +|(% style="width:360px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% style="width:221px" %)date 655 +|(% style="width:360px" %)GregorianDay (YYYY-MM-DD)|(% style="width:221px" %)date 656 +|(% style="width:360px" %)((( 665 665 ReportingTimePeriod 666 666 (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 667 -)))|time_period 668 -|((( 659 +)))|(% style="width:221px" %)time_period 660 +|(% style="width:360px" %)((( 669 669 ReportingYear 670 670 (YYYY-A1 – 1 year period) 671 -)))|time_period 672 -|((( 663 +)))|(% style="width:221px" %)time_period 664 +|(% style="width:360px" %)((( 673 673 ReportingSemester 674 674 (YYYY-Ss – 6 month period) 675 -)))|time_period 676 -|((( 667 +)))|(% style="width:221px" %)time_period 668 +|(% style="width:360px" %)((( 677 677 ReportingTrimester 678 678 (YYYY-Tt – 4 month period) 679 -)))|time_period 680 -|((( 671 +)))|(% style="width:221px" %)time_period 672 +|(% style="width:360px" %)((( 681 681 ReportingQuarter 682 682 (YYYY-Qq – 3 month period) 683 -)))|time_period 684 -|((( 675 +)))|(% style="width:221px" %)time_period 676 +|(% style="width:360px" %)((( 685 685 ReportingMonth 686 686 (YYYY-Mmm – 1 month period) 687 -)))|time_period 688 -|ReportingWeek|time_period 689 -| (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)| 690 -|((( 679 +)))|(% style="width:221px" %)time_period 680 +|(% style="width:360px" %)ReportingWeek|(% style="width:221px" %)time_period 681 +|(% style="width:360px" %) (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% style="width:221px" %) 682 +|(% style="width:360px" %)((( 691 691 ReportingDay 692 692 (YYYY-Dddd – 1 day period) 693 -)))|time_period 694 -|((( 685 +)))|(% style="width:221px" %)time_period 686 +|(% style="width:360px" %)((( 695 695 DateTime 696 696 (YYYY-MM-DDThh:mm:ss) 697 -)))|date 698 -|((( 689 +)))|(% style="width:221px" %)date 690 +|(% style="width:360px" %)((( 699 699 TimeRange 700 700 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 701 -)))|time 702 -|((( 693 +)))|(% style="width:221px" %)time 694 +|(% style="width:360px" %)((( 703 703 Month 704 704 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 705 -)))|string 706 -|((( 697 +)))|(% style="width:221px" %)string 698 +|(% style="width:360px" %)((( 707 707 MonthDay 708 708 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 709 -)))|string 710 -|((( 701 +)))|(% style="width:221px" %)string 702 +|(% style="width:360px" %)((( 711 711 Day 712 712 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 713 -)))|string 714 -|((( 705 +)))|(% style="width:221px" %)string 706 +|(% style="width:360px" %)((( 715 715 Time 716 716 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 717 -)))|string 718 -|((( 709 +)))|(% style="width:221px" %)string 710 +|(% style="width:360px" %)((( 719 719 Duration 720 720 (corresponds to XML Schema xs:duration datatype) 721 -)))|duration 722 -|XHTML|Metadata type – not applicable 723 -|KeyValues|Metadata type – not applicable 724 -|IdentifiableReference|Metadata type – not applicable 725 -|DataSetReference|Metadata type – not applicable 713 +)))|(% style="width:221px" %)duration 714 +|(% style="width:360px" %)XHTML|(% style="width:221px" %)Metadata type – not applicable 715 +|(% style="width:360px" %)KeyValues|(% style="width:221px" %)Metadata type – not applicable 716 +|(% style="width:360px" %)IdentifiableReference|(% style="width:221px" %)Metadata type – not applicable 717 +|(% style="width:360px" %)DataSetReference|(% style="width:221px" %)Metadata type – not applicable 726 726 727 727 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 728 728 ... ... @@ -732,84 +732,82 @@ 732 732 733 733 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 734 734 735 - |(((736 - VTLbasic737 -scalar type 738 -)))|((( 727 +(% style="width:748.294px" %) 728 +|(% style="width:164px" %)((( 729 +VTL basic scalar type 730 +)))|(% style="width:304px" %)((( 739 739 Default SDMX data type 740 -(BasicComponentDataType 741 -) 742 -)))|Default output format 743 -|String|String|Like XML (xs:string) 744 -|Number|Float|Like XML (xs:float) 745 -|Integer|Integer|Like XML (xs:int) 746 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 747 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 748 -|time_period|((( 732 +(BasicComponentDataType) 733 +)))|(% style="width:277px" %)Default output format 734 +|(% style="width:164px" %)String|(% style="width:304px" %)String|(% style="width:277px" %)Like XML (xs:string) 735 +|(% style="width:164px" %)Number|(% style="width:304px" %)Float|(% style="width:277px" %)Like XML (xs:float) 736 +|(% style="width:164px" %)Integer|(% style="width:304px" %)Integer|(% style="width:277px" %)Like XML (xs:int) 737 +|(% style="width:164px" %)Date|(% style="width:304px" %)DateTime|(% style="width:277px" %)YYYY-MM-DDT00:00:00Z 738 +|(% style="width:164px" %)Time|(% style="width:304px" %)StandardTimePeriod|(% style="width:277px" %)<date>/<date> (as defined above) 739 +|(% style="width:164px" %)time_period|(% style="width:304px" %)((( 749 749 ReportingTimePeriod 750 750 (StandardReportingPeriod) 751 -)))|((( 742 +)))|(% style="width:277px" %)((( 752 752 YYYY-Pppp 753 753 (according to SDMX ) 754 754 ))) 755 -|Duration|Duration|Like XML(xs:duration) PnYnMnDTnHnMnS756 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 746 +|(% style="width:164px" %)Duration|(% style="width:304px" %)Duration|(% style="width:277px" %)Like XML (xs:duration) PnYnMnDTnHnMnS 747 +|(% style="width:164px" %)Boolean|(% style="width:304px" %)Boolean|(% style="width:277px" %)Like XML (xs:boolean) with the values "true" or "false" 757 757 758 758 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 759 759 760 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section 751 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 761 761 762 -Transformations and Expressions of the SDMX information model). 763 - 764 764 The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table. 765 765 766 -|(% colspan="2" %)VTL special characters for the formatting masks 767 -|(% colspan="2" %) 768 -|(% colspan="2" %)Number 769 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 770 -|E|one numeric digit (for the exponent of the scientific notation) 771 -|. (dot)|possible separator between the integer and the decimal parts. 772 -|, (comma)|possible separator between the integer and the decimal parts. 773 -| | 774 -|(% colspan="2" %)Time and duration 775 -|C|century 776 -|Y|year 777 -|S|semester 778 -|Q|quarter 779 -|M|month 780 -|W|week 781 -|D|day 782 -|h|hour digit (by default on 24 hours) 783 -|M|minute 784 -|S|second 785 -|D|decimal of second 786 -|P|period indicator (representation in one digit for the duration) 787 -|P|number of the periods specified in the period indicator 788 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm") 789 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January) 790 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday) 791 -|Month|lowercase textual representation of the month (e.g., january) 792 -|Day|lowercase textual representation of the month (e.g., monday) 793 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January) 794 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 795 -| | 796 -|(% colspan="2" %)String 797 -|X|any string character 798 -|Z|any string character from "A" to "z" 799 -|9|any string character from "0" to "9" 800 -| | 801 -|(% colspan="2" %)Boolean 802 -|B|Boolean using "true" for True and "false" for False 803 -|1|Boolean using "1" for True and "0" for False 804 -|0|Boolean using "0" for True and "1" for False 805 -| | 806 -|(% colspan="2" %)Other qualifiers 807 -|*|an arbitrary number of digits (of the preceding type) 808 -|+|at least one digit (of the preceding type) 809 -|( )|optional digits (specified within the brackets) 810 -|\|prefix for the special characters that must appear in the mask 811 -|N|fixed number of digits used in the preceding textual representation of the month or the day 812 -| | 755 +(% style="width:717.294px" %) 756 +|(% colspan="2" style="width:714px" %)VTL special characters for the formatting masks 757 +|(% colspan="2" style="width:714px" %) 758 +|(% colspan="2" style="width:714px" %)Number 759 +|(% style="width:122px" %)D|(% style="width:591px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 760 +|(% style="width:122px" %)E|(% style="width:591px" %)one numeric digit (for the exponent of the scientific notation) 761 +|(% style="width:122px" %). (dot)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 762 +|(% style="width:122px" %), (comma)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 763 +|(% style="width:122px" %) |(% style="width:591px" %) 764 +|(% colspan="2" style="width:714px" %)Time and duration 765 +|(% style="width:122px" %)C|(% style="width:591px" %)century 766 +|(% style="width:122px" %)Y|(% style="width:591px" %)year 767 +|(% style="width:122px" %)S|(% style="width:591px" %)semester 768 +|(% style="width:122px" %)Q|(% style="width:591px" %)quarter 769 +|(% style="width:122px" %)M|(% style="width:591px" %)month 770 +|(% style="width:122px" %)W|(% style="width:591px" %)week 771 +|(% style="width:122px" %)D|(% style="width:591px" %)day 772 +|(% style="width:122px" %)h|(% style="width:591px" %)hour digit (by default on 24 hours) 773 +|(% style="width:122px" %)M|(% style="width:591px" %)minute 774 +|(% style="width:122px" %)S|(% style="width:591px" %)second 775 +|(% style="width:122px" %)D|(% style="width:591px" %)decimal of second 776 +|(% style="width:122px" %)P|(% style="width:591px" %)period indicator (representation in one digit for the duration) 777 +|(% style="width:122px" %)P|(% style="width:591px" %)number of the periods specified in the period indicator 778 +|(% style="width:122px" %)AM/PM|(% style="width:591px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm") 779 +|(% style="width:122px" %)MONTH|(% style="width:591px" %)uppercase textual representation of the month (e.g., JANUARY for January) 780 +|(% style="width:122px" %)DAY|(% style="width:591px" %)uppercase textual representation of the day (e.g., MONDAY for Monday) 781 +|(% style="width:122px" %)Month|(% style="width:591px" %)lowercase textual representation of the month (e.g., january) 782 +|(% style="width:122px" %)Day|(% style="width:591px" %)lowercase textual representation of the month (e.g., monday) 783 +|(% style="width:122px" %)Month|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the month (e.g., January) 784 +|(% style="width:122px" %)Day|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 785 +|(% style="width:122px" %) |(% style="width:591px" %) 786 +|(% colspan="2" style="width:714px" %)String 787 +|(% style="width:122px" %)X|(% style="width:591px" %)any string character 788 +|(% style="width:122px" %)Z|(% style="width:591px" %)any string character from "A" to "z" 789 +|(% style="width:122px" %)9|(% style="width:591px" %)any string character from "0" to "9" 790 +|(% style="width:122px" %) |(% style="width:591px" %) 791 +|(% colspan="2" style="width:714px" %)Boolean 792 +|(% style="width:122px" %)B|(% style="width:591px" %)Boolean using "true" for True and "false" for False 793 +|(% style="width:122px" %)1|(% style="width:591px" %)Boolean using "1" for True and "0" for False 794 +|(% style="width:122px" %)0|(% style="width:591px" %)Boolean using "0" for True and "1" for False 795 +|(% style="width:122px" %) |(% style="width:591px" %) 796 +|(% colspan="2" style="width:714px" %)Other qualifiers 797 +|(% style="width:122px" %)*|(% style="width:591px" %)an arbitrary number of digits (of the preceding type) 798 +|(% style="width:122px" %)+|(% style="width:591px" %)at least one digit (of the preceding type) 799 +|(% style="width:122px" %)( )|(% style="width:591px" %)optional digits (specified within the brackets) 800 +|(% style="width:122px" %)\|(% style="width:591px" %)prefix for the special characters that must appear in the mask 801 +|(% style="width:122px" %)N|(% style="width:591px" %)fixed number of digits used in the preceding textual representation of the month or the day 802 +|(% style="width:122px" %) |(% style="width:591px" %) 813 813 814 814 The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 815 815
- 1750067055028-964.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.5 KB - Content
- 1750070288958-132.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.9 KB - Content
- 1750070310572-584.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content