Last modified by Artur on 2025/09/10 11:19

From version 1.21
edited by Helena
on 2025/06/16 13:26
Change comment: There is no comment for this version
To version 1.25
edited by Helena
on 2025/06/16 13:38
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -256,19 +256,14 @@
256 256  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
257 257  
258 258  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
259 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
260 -
261 -Identifiers, (time) Identifier and Attributes.
262 -
259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
263 263  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
264 264  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
265 265  
266 266  ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
267 267  
268 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
269 269  
270 -Attributes.
271 -
272 272  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
273 273  
274 274  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
... ... @@ -285,11 +285,12 @@
285 285  
286 286  Mapping table:
287 287  
288 -|**VTL**|**SDMX**
289 -|(Simple) Identifier|Dimension
290 -|(Time) Identifier|TimeDimension
291 -|Measure|Measure
292 -|Attribute|DataAttribute
283 +(% style="width:470.294px" %)
284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX**
285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension
286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension
287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure
288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute
293 293  
294 294  If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
295 295  
... ... @@ -317,11 +317,12 @@
317 317  
318 318  The summary mapping table of the **unpivot** mapping method is the following:
319 319  
320 -|**VTL**|**SDMX**
321 -|(Simple) Identifier|Dimension
322 -|(Time) Identifier|TimeDimension
323 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure
324 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
316 +(% style="width:638.294px" %)
317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX**
318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension
319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension
320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure
321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
325 325  
326 326  At observation / data point level:
327 327  
... ... @@ -343,12 +343,13 @@
343 343  
344 344  The mapping table is the following:
345 345  
346 -|VTL|SDMX
347 -|(Simple) Identifier|Dimension
348 -|(Time) Identifier|TimeDimension
349 -|Some Measures|Measure
350 -|Other Measures|DataAttribute
351 -|Attribute|DataAttribute
343 +(% style="width:467.294px" %)
344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX
345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension
346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension
347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure
348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute
349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute
352 352  
353 353  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
354 354  
... ... @@ -386,11 +386,11 @@
386 386  
387 387  Therefore, the generic name of this kind of VTL datasets would be:
388 388  
389 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
390 390  
391 391  Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be:
392 392  
393 -‘DF(1.0.0)/POPULATION.USA’
391 +> ‘DF(1.0.0)/POPULATION.USA’
394 394  
395 395  In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA.
396 396  
... ... @@ -404,26 +404,22 @@
404 404  
405 405  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
406 406  
407 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
408 408  
409 -basic, pivot …).
410 -
411 411  In the example above, for all the datasets of the kind
412 412  
413 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
414 414  
415 415  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
416 416  
417 -‘DF1(1.0.0)/POPULATION.USA’ :=
413 +> ‘DF1(1.0.0)/POPULATION.USA’ :=
414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
415 +>
416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ :=
417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
418 +>
419 +> … … …
418 418  
419 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
420 -
421 -‘DF1(1.0.0)/POPULATION.CANADA’ :=
422 -
423 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
424 -
425 -… … …
426 -
427 427  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
428 428  
429 429  In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
... ... @@ -432,10 +432,9 @@
432 432  
433 433  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
434 434  
435 -‘DF1(1.0.0)/POPULATION.’ :=
429 +> ‘DF1(1.0.0)/POPULATION.’ :=
430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
436 436  
437 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
438 -
439 439  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
440 440  
441 441  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations.
... ... @@ -453,41 +453,38 @@
453 453  
454 454  The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
455 455  
456 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
457 457  
458 458  Some examples follow, for some specific values of INDICATOR and COUNTRY:
459 459  
460 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
461 -… … …
453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
454 +> … … …
455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
457 +> … … …
462 462  
463 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
464 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
465 -… … …
466 -
467 467  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
468 468  
469 469  VTL dataset   INDICATOR value COUNTRY value
470 470  
471 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
472 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
473 -‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
474 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
465 +> ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
466 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
467 +> … … …
475 475  
476 -… … …
477 -
478 478  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
479 479  
480 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
481 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
482 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
483 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
484 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
485 -DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
486 -DF2bis_GDPPERCAPITA_CANADA’,
487 -… ,
488 -DF2bis_POPGROWTH_USA’,
489 -DF2bis_POPGROWTH_CANADA’
490 -…);
471 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
472 +> DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
473 +> DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
474 +> DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
475 +> DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
476 +> DF2bis_GDPPERCAPITA_CANADA’,
477 +> … ,
478 +> DF2bis_POPGROWTH_USA’,
479 +> DF2bis_POPGROWTH_CANADA’
480 +> …);
491 491  
492 492  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
493 493  
... ... @@ -499,25 +499,26 @@
499 499  
500 500  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
501 501  
502 -|VTL|SDMX
503 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
504 -|**Represented Variable**|**Concept** with a definite Representation
505 -|**Value Domain**|(((
492 +(% style="width:706.294px" %)
493 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX
494 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
495 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation
496 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)(((
506 506  **Representation** (see the Structure
507 507  Pattern in the Base Package)
508 508  )))
509 -|**Enumerated Value Domain / Code List**|**Codelist**
510 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
511 -|**Described Value Domain**|(((
500 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist**
501 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
502 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)(((
512 512  non-enumerated** Representation**
513 513  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
514 514  )))
515 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
516 -| |to a valid **value **(for non-enumerated** **Representations)
517 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
518 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
519 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
520 -|**Set list**|This abstraction does not exist in SDMX
506 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
507 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations)
508 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
509 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
510 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
511 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX
521 521  
522 522  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
523 523  
... ... @@ -525,8 +525,10 @@
525 525  
526 526  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
527 527  
528 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
519 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
529 529  
521 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
522 +
530 530  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
531 531  
532 532  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
... ... @@ -541,8 +541,9 @@
541 541  
542 542  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
543 543  
544 -[[image:1750067055028-964.png]]
545 545  
538 +[[image:1750070288958-132.png]]
539 +
546 546  **Figure 22 – VTL Data Types**
547 547  
548 548  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
1750070288958-132.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +45.9 KB
Content