Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 1 removed)
-
Objects (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,7 +18,7 @@ 18 18 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 -== 12.2 References to SDMX artefacts from VTL statements ==21 +== 12.2 References to SDMX artefacts from VTL statements == 22 22 23 23 === 12.2.1 Introduction === 24 24 ... ... @@ -116,7 +116,7 @@ 116 116 117 117 by omitting all the non-essential parts would become simply: 118 118 119 -> DFR : =DF1 + DF2119 +> DFR : = DF1 + DF2 120 120 121 121 The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}: 122 122 ... ... @@ -256,19 +256,14 @@ 256 256 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 257 257 258 258 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 259 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 260 - 261 -Identifiers, (time) Identifier and Attributes. 262 - 259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 263 263 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 264 264 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 265 265 266 266 ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ==== 267 267 268 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 269 269 270 -Attributes. 271 - 272 272 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. 273 273 274 274 Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures. ... ... @@ -285,11 +285,12 @@ 285 285 286 286 Mapping table: 287 287 288 -|**VTL**|**SDMX** 289 -|(Simple) Identifier|Dimension 290 -|(Time) Identifier|TimeDimension 291 -|Measure|Measure 292 -|Attribute|DataAttribute 283 +(% style="width:470.294px" %) 284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX** 285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension 286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension 287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure 288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute 293 293 294 294 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 295 295 ... ... @@ -317,11 +317,12 @@ 317 317 318 318 The summary mapping table of the **unpivot** mapping method is the following: 319 319 320 -|**VTL**|**SDMX** 321 -|(Simple) Identifier|Dimension 322 -|(Time) Identifier|TimeDimension 323 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 324 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 316 +(% style="width:638.294px" %) 317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX** 318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension 319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension 320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 325 325 326 326 At observation / data point level: 327 327 ... ... @@ -343,12 +343,13 @@ 343 343 344 344 The mapping table is the following: 345 345 346 -|VTL|SDMX 347 -|(Simple) Identifier|Dimension 348 -|(Time) Identifier|TimeDimension 349 -|Some Measures|Measure 350 -|Other Measures|DataAttribute 351 -|Attribute|DataAttribute 343 +(% style="width:467.294px" %) 344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX 345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension 346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension 347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure 348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute 349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute 352 352 353 353 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 354 354 ... ... @@ -386,11 +386,11 @@ 386 386 387 387 Therefore, the generic name of this kind of VTL datasets would be: 388 388 389 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 390 390 391 391 Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be: 392 392 393 -‘DF(1.0.0)/POPULATION.USA’ 391 +> ‘DF(1.0.0)/POPULATION.USA’ 394 394 395 395 In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA. 396 396 ... ... @@ -404,26 +404,22 @@ 404 404 405 405 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 406 406 407 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 408 408 409 -basic, pivot …). 410 - 411 411 In the example above, for all the datasets of the kind 412 412 413 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 414 414 415 415 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 416 416 417 -‘DF1(1.0.0)/POPULATION.USA’ := 413 +> ‘DF1(1.0.0)/POPULATION.USA’ := 414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 415 +> 416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ := 417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 418 +> 419 +> … … … 418 418 419 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 420 - 421 -‘DF1(1.0.0)/POPULATION.CANADA’ := 422 - 423 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 424 - 425 -… … … 426 - 427 427 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} 428 428 429 429 In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. ... ... @@ -432,10 +432,9 @@ 432 432 433 433 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 434 434 435 -‘DF1(1.0.0)/POPULATION.’ := 429 +> ‘DF1(1.0.0)/POPULATION.’ := 430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 436 436 437 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 438 - 439 439 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 440 440 441 441 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations. ... ... @@ -453,41 +453,33 @@ 453 453 454 454 The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}} 455 455 456 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 457 457 458 458 Some examples follow, for some specific values of INDICATOR and COUNTRY: 459 459 460 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 461 -… … … 453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 454 +> … … … 455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 457 +> … … … 462 462 463 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 464 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 465 -… … … 466 - 467 467 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 468 468 469 -VTL dataset INDICATOR value COUNTRY value 461 +> VTL dataset INDICATOR value COUNTRY value 462 +> 463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 465 +> 466 +> ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 467 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 468 +> … … … 470 470 471 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 472 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 473 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 474 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 475 - 476 -… … … 477 - 478 478 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 479 479 480 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 481 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 482 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 483 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 484 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 485 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 486 -DF2bis_GDPPERCAPITA_CANADA’, 487 -… , 488 -DF2bis_POPGROWTH_USA’, 489 -DF2bis_POPGROWTH_CANADA’ 490 -…); 472 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”];… … … DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”];… … … DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, DF2bis_GDPPERCAPITA_CANADA’, 473 +> … , 474 +> DF2bis_POPGROWTH_USA’, DF2bis_POPGROWTH_CANADA’ 475 +> …); 491 491 492 492 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 493 493 ... ... @@ -499,25 +499,26 @@ 499 499 500 500 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 501 501 502 -|VTL|SDMX 503 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 504 -|**Represented Variable**|**Concept** with a definite Representation 505 -|**Value Domain**|((( 487 +(% style="width:706.294px" %) 488 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX 489 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 490 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation 491 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)((( 506 506 **Representation** (see the Structure 507 507 Pattern in the Base Package) 508 508 ))) 509 -|**Enumerated Value Domain / Code List**|**Codelist** 510 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 511 -|**Described Value Domain**|((( 495 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist** 496 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute) 497 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)((( 512 512 non-enumerated** Representation** 513 513 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 514 514 ))) 515 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 516 -| |to a valid **value **(for non-enumerated** **Representations) 517 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 518 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 519 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 520 -|**Set list**|This abstraction does not exist in SDMX 501 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 502 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations) 503 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 504 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 505 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX 506 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX 521 521 522 522 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 523 523 ... ... @@ -525,8 +525,10 @@ 525 525 526 526 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 527 527 528 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.514 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 529 529 516 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 517 + 530 530 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 531 531 532 532 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -541,8 +541,9 @@ 541 541 542 542 The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual: 543 543 544 -[[image:1750067055028-964.png]] 545 545 533 +[[image:1750070288958-132.png]] 534 + 546 546 **Figure 22 – VTL Data Types** 547 547 548 548 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. ... ... @@ -549,6 +549,8 @@ 549 549 550 550 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 551 551 541 +[[image:1750070310572-584.png]] 542 + 552 552 **Figure 23 – VTL Basic Scalar Types** 553 553 554 554 === 12.4.2 VTL basic scalar types and SDMX data types === ... ... @@ -573,158 +573,157 @@ 573 573 574 574 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 575 575 576 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 577 -|((( 567 +(% style="width:583.294px" %) 568 +|(% style="width:360px" %)SDMX data type (BasicComponentDataType)|(% style="width:221px" %)Default VTL basic scalar type 569 +|(% style="width:360px" %)((( 578 578 String 579 579 (string allowing any character) 580 -)))|string 581 -|((( 582 -Alpha 583 - 572 +)))|(% style="width:221px" %)string 573 +|(% style="width:360px" %)((( 574 +Alpha 584 584 (string which only allows A-z) 585 -)))|string 586 -|((( 576 +)))|(% style="width:221px" %)string 577 +|(% style="width:360px" %)((( 587 587 AlphaNumeric 588 588 (string which only allows A-z and 0-9) 589 -)))|string 590 -|((( 580 +)))|(% style="width:221px" %)string 581 +|(% style="width:360px" %)((( 591 591 Numeric 592 - 593 593 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 594 -)))|string 595 -|((( 584 +)))|(% style="width:221px" %)string 585 +|(% style="width:360px" %)((( 596 596 BigInteger 597 597 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 598 -)))|integer 599 -|((( 588 +)))|(% style="width:221px" %)integer 589 +|(% style="width:360px" %)((( 600 600 Integer 601 601 (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 602 602 (inclusive)) 603 -)))|integer 604 -|((( 593 +)))|(% style="width:221px" %)integer 594 +|(% style="width:360px" %)((( 605 605 Long 606 606 (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 607 607 +9223372036854775807 (inclusive)) 608 -)))|integer 609 -|((( 598 +)))|(% style="width:221px" %)integer 599 +|(% style="width:360px" %)((( 610 610 Short 611 611 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 612 -)))|integer 613 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 614 -|((( 602 +)))|(% style="width:221px" %)integer 603 +|(% style="width:360px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:221px" %)number 604 +|(% style="width:360px" %)((( 615 615 Float 616 616 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 617 -)))|number 618 -|((( 607 +)))|(% style="width:221px" %)number 608 +|(% style="width:360px" %)((( 619 619 Double 620 620 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 621 -)))|number 622 -|((( 611 +)))|(% style="width:221px" %)number 612 +|(% style="width:360px" %)((( 623 623 Boolean 624 624 (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 625 625 binary-valued logic: {true, false}) 626 -)))|boolean 627 -|((( 616 +)))|(% style="width:221px" %)boolean 617 +|(% style="width:360px" %)((( 628 628 URI 629 629 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 630 -)))|string 631 -|((( 620 +)))|(% style="width:221px" %)string 621 +|(% style="width:360px" %)((( 632 632 Count 633 633 (an integer following a sequential pattern, increasing by 1 for each occurrence) 634 -)))|integer 635 -|((( 624 +)))|(% style="width:221px" %)integer 625 +|(% style="width:360px" %)((( 636 636 InclusiveValueRange 637 637 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 638 -)))|number 639 -|((( 628 +)))|(% style="width:221px" %)number 629 +|(% style="width:360px" %)((( 640 640 ExclusiveValueRange 641 641 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 642 -)))|number 643 -|((( 632 +)))|(% style="width:221px" %)number 633 +|(% style="width:360px" %)((( 644 644 Incremental 645 645 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 646 -)))|number 647 -|((( 636 +)))|(% style="width:221px" %)number 637 +|(% style="width:360px" %)((( 648 648 ObservationalTimePeriod 649 649 (superset of StandardTimePeriod and TimeRange) 650 -)))|time 651 -|((( 640 +)))|(% style="width:221px" %)time 641 +|(% style="width:360px" %)((( 652 652 StandardTimePeriod 653 653 (superset of BasicTimePeriod and ReportingTimePeriod) 654 -)))|time 655 -|((( 644 +)))|(% style="width:221px" %)time 645 +|(% style="width:360px" %)((( 656 656 BasicTimePeriod 657 657 (superset of GregorianTimePeriod and DateTime) 658 -)))|date 659 -|((( 648 +)))|(% style="width:221px" %)date 649 +|(% style="width:360px" %)((( 660 660 GregorianTimePeriod 661 661 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 662 -)))|date 663 -|GregorianYear (YYYY)|date664 -|GregorianYearMonth / GregorianMonth (YYYY-MM)|date 665 -|GregorianDay (YYYY-MM-DD)|date 666 -|((( 652 +)))|(% style="width:221px" %)date 653 +|(% style="width:360px" %)GregorianYear (YYYY)|(% style="width:221px" %)date 654 +|(% style="width:360px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% style="width:221px" %)date 655 +|(% style="width:360px" %)GregorianDay (YYYY-MM-DD)|(% style="width:221px" %)date 656 +|(% style="width:360px" %)((( 667 667 ReportingTimePeriod 668 668 (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 669 -)))|time_period 670 -|((( 659 +)))|(% style="width:221px" %)time_period 660 +|(% style="width:360px" %)((( 671 671 ReportingYear 672 672 (YYYY-A1 – 1 year period) 673 -)))|time_period 674 -|((( 663 +)))|(% style="width:221px" %)time_period 664 +|(% style="width:360px" %)((( 675 675 ReportingSemester 676 676 (YYYY-Ss – 6 month period) 677 -)))|time_period 678 -|((( 667 +)))|(% style="width:221px" %)time_period 668 +|(% style="width:360px" %)((( 679 679 ReportingTrimester 680 680 (YYYY-Tt – 4 month period) 681 -)))|time_period 682 -|((( 671 +)))|(% style="width:221px" %)time_period 672 +|(% style="width:360px" %)((( 683 683 ReportingQuarter 684 684 (YYYY-Qq – 3 month period) 685 -)))|time_period 686 -|((( 675 +)))|(% style="width:221px" %)time_period 676 +|(% style="width:360px" %)((( 687 687 ReportingMonth 688 688 (YYYY-Mmm – 1 month period) 689 -)))|time_period 690 -|ReportingWeek|time_period 691 -| (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)| 692 -|((( 679 +)))|(% style="width:221px" %)time_period 680 +|(% style="width:360px" %)ReportingWeek|(% style="width:221px" %)time_period 681 +|(% style="width:360px" %) (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% style="width:221px" %) 682 +|(% style="width:360px" %)((( 693 693 ReportingDay 694 694 (YYYY-Dddd – 1 day period) 695 -)))|time_period 696 -|((( 685 +)))|(% style="width:221px" %)time_period 686 +|(% style="width:360px" %)((( 697 697 DateTime 698 698 (YYYY-MM-DDThh:mm:ss) 699 -)))|date 700 -|((( 689 +)))|(% style="width:221px" %)date 690 +|(% style="width:360px" %)((( 701 701 TimeRange 702 702 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 703 -)))|time 704 -|((( 693 +)))|(% style="width:221px" %)time 694 +|(% style="width:360px" %)((( 705 705 Month 706 706 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 707 -)))|string 708 -|((( 697 +)))|(% style="width:221px" %)string 698 +|(% style="width:360px" %)((( 709 709 MonthDay 710 710 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 711 -)))|string 712 -|((( 701 +)))|(% style="width:221px" %)string 702 +|(% style="width:360px" %)((( 713 713 Day 714 714 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 715 -)))|string 716 -|((( 705 +)))|(% style="width:221px" %)string 706 +|(% style="width:360px" %)((( 717 717 Time 718 718 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 719 -)))|string 720 -|((( 709 +)))|(% style="width:221px" %)string 710 +|(% style="width:360px" %)((( 721 721 Duration 722 722 (corresponds to XML Schema xs:duration datatype) 723 -)))|duration 724 -|XHTML|Metadata type – not applicable 725 -|KeyValues|Metadata type – not applicable 726 -|IdentifiableReference|Metadata type – not applicable 727 -|DataSetReference|Metadata type – not applicable 713 +)))|(% style="width:221px" %)duration 714 +|(% style="width:360px" %)XHTML|(% style="width:221px" %)Metadata type – not applicable 715 +|(% style="width:360px" %)KeyValues|(% style="width:221px" %)Metadata type – not applicable 716 +|(% style="width:360px" %)IdentifiableReference|(% style="width:221px" %)Metadata type – not applicable 717 +|(% style="width:360px" %)DataSetReference|(% style="width:221px" %)Metadata type – not applicable 728 728 729 729 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 730 730 ... ... @@ -734,84 +734,82 @@ 734 734 735 735 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 736 736 737 - |(((738 - VTLbasic739 -scalar type 740 -)))|((( 727 +(% style="width:748.294px" %) 728 +|(% style="width:164px" %)((( 729 +VTL basic scalar type 730 +)))|(% style="width:304px" %)((( 741 741 Default SDMX data type 742 -(BasicComponentDataType 743 -) 744 -)))|Default output format 745 -|String|String|Like XML (xs:string) 746 -|Number|Float|Like XML (xs:float) 747 -|Integer|Integer|Like XML (xs:int) 748 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 749 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 750 -|time_period|((( 732 +(BasicComponentDataType) 733 +)))|(% style="width:277px" %)Default output format 734 +|(% style="width:164px" %)String|(% style="width:304px" %)String|(% style="width:277px" %)Like XML (xs:string) 735 +|(% style="width:164px" %)Number|(% style="width:304px" %)Float|(% style="width:277px" %)Like XML (xs:float) 736 +|(% style="width:164px" %)Integer|(% style="width:304px" %)Integer|(% style="width:277px" %)Like XML (xs:int) 737 +|(% style="width:164px" %)Date|(% style="width:304px" %)DateTime|(% style="width:277px" %)YYYY-MM-DDT00:00:00Z 738 +|(% style="width:164px" %)Time|(% style="width:304px" %)StandardTimePeriod|(% style="width:277px" %)<date>/<date> (as defined above) 739 +|(% style="width:164px" %)time_period|(% style="width:304px" %)((( 751 751 ReportingTimePeriod 752 752 (StandardReportingPeriod) 753 -)))|((( 742 +)))|(% style="width:277px" %)((( 754 754 YYYY-Pppp 755 755 (according to SDMX ) 756 756 ))) 757 -|Duration|Duration|Like XML(xs:duration) PnYnMnDTnHnMnS758 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 746 +|(% style="width:164px" %)Duration|(% style="width:304px" %)Duration|(% style="width:277px" %)Like XML (xs:duration) PnYnMnDTnHnMnS 747 +|(% style="width:164px" %)Boolean|(% style="width:304px" %)Boolean|(% style="width:277px" %)Like XML (xs:boolean) with the values "true" or "false" 759 759 760 760 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 761 761 762 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section 751 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 763 763 764 -Transformations and Expressions of the SDMX information model). 765 - 766 766 The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table. 767 767 768 -|(% colspan="2" %)VTL special characters for the formatting masks 769 -|(% colspan="2" %) 770 -|(% colspan="2" %)Number 771 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 772 -|E|one numeric digit (for the exponent of the scientific notation) 773 -|. (dot)|possible separator between the integer and the decimal parts. 774 -|, (comma)|possible separator between the integer and the decimal parts. 775 -| | 776 -|(% colspan="2" %)Time and duration 777 -|C|century 778 -|Y|year 779 -|S|semester 780 -|Q|quarter 781 -|M|month 782 -|W|week 783 -|D|day 784 -|h|hour digit (by default on 24 hours) 785 -|M|minute 786 -|S|second 787 -|D|decimal of second 788 -|P|period indicator (representation in one digit for the duration) 789 -|P|number of the periods specified in the period indicator 790 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm") 791 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January) 792 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday) 793 -|Month|lowercase textual representation of the month (e.g., january) 794 -|Day|lowercase textual representation of the month (e.g., monday) 795 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January) 796 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 797 -| | 798 -|(% colspan="2" %)String 799 -|X|any string character 800 -|Z|any string character from "A" to "z" 801 -|9|any string character from "0" to "9" 802 -| | 803 -|(% colspan="2" %)Boolean 804 -|B|Boolean using "true" for True and "false" for False 805 -|1|Boolean using "1" for True and "0" for False 806 -|0|Boolean using "0" for True and "1" for False 807 -| | 808 -|(% colspan="2" %)Other qualifiers 809 -|*|an arbitrary number of digits (of the preceding type) 810 -|+|at least one digit (of the preceding type) 811 -|( )|optional digits (specified within the brackets) 812 -|\|prefix for the special characters that must appear in the mask 813 -|N|fixed number of digits used in the preceding textual representation of the month or the day 814 -| | 755 +(% style="width:717.294px" %) 756 +|(% colspan="2" style="width:714px" %)VTL special characters for the formatting masks 757 +|(% colspan="2" style="width:714px" %) 758 +|(% colspan="2" style="width:714px" %)Number 759 +|(% style="width:122px" %)D|(% style="width:591px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 760 +|(% style="width:122px" %)E|(% style="width:591px" %)one numeric digit (for the exponent of the scientific notation) 761 +|(% style="width:122px" %). (dot)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 762 +|(% style="width:122px" %), (comma)|(% style="width:591px" %)possible separator between the integer and the decimal parts. 763 +|(% style="width:122px" %) |(% style="width:591px" %) 764 +|(% colspan="2" style="width:714px" %)Time and duration 765 +|(% style="width:122px" %)C|(% style="width:591px" %)century 766 +|(% style="width:122px" %)Y|(% style="width:591px" %)year 767 +|(% style="width:122px" %)S|(% style="width:591px" %)semester 768 +|(% style="width:122px" %)Q|(% style="width:591px" %)quarter 769 +|(% style="width:122px" %)M|(% style="width:591px" %)month 770 +|(% style="width:122px" %)W|(% style="width:591px" %)week 771 +|(% style="width:122px" %)D|(% style="width:591px" %)day 772 +|(% style="width:122px" %)h|(% style="width:591px" %)hour digit (by default on 24 hours) 773 +|(% style="width:122px" %)M|(% style="width:591px" %)minute 774 +|(% style="width:122px" %)S|(% style="width:591px" %)second 775 +|(% style="width:122px" %)D|(% style="width:591px" %)decimal of second 776 +|(% style="width:122px" %)P|(% style="width:591px" %)period indicator (representation in one digit for the duration) 777 +|(% style="width:122px" %)P|(% style="width:591px" %)number of the periods specified in the period indicator 778 +|(% style="width:122px" %)AM/PM|(% style="width:591px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm") 779 +|(% style="width:122px" %)MONTH|(% style="width:591px" %)uppercase textual representation of the month (e.g., JANUARY for January) 780 +|(% style="width:122px" %)DAY|(% style="width:591px" %)uppercase textual representation of the day (e.g., MONDAY for Monday) 781 +|(% style="width:122px" %)Month|(% style="width:591px" %)lowercase textual representation of the month (e.g., january) 782 +|(% style="width:122px" %)Day|(% style="width:591px" %)lowercase textual representation of the month (e.g., monday) 783 +|(% style="width:122px" %)Month|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the month (e.g., January) 784 +|(% style="width:122px" %)Day|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday) 785 +|(% style="width:122px" %) |(% style="width:591px" %) 786 +|(% colspan="2" style="width:714px" %)String 787 +|(% style="width:122px" %)X|(% style="width:591px" %)any string character 788 +|(% style="width:122px" %)Z|(% style="width:591px" %)any string character from "A" to "z" 789 +|(% style="width:122px" %)9|(% style="width:591px" %)any string character from "0" to "9" 790 +|(% style="width:122px" %) |(% style="width:591px" %) 791 +|(% colspan="2" style="width:714px" %)Boolean 792 +|(% style="width:122px" %)B|(% style="width:591px" %)Boolean using "true" for True and "false" for False 793 +|(% style="width:122px" %)1|(% style="width:591px" %)Boolean using "1" for True and "0" for False 794 +|(% style="width:122px" %)0|(% style="width:591px" %)Boolean using "0" for True and "1" for False 795 +|(% style="width:122px" %) |(% style="width:591px" %) 796 +|(% colspan="2" style="width:714px" %)Other qualifiers 797 +|(% style="width:122px" %)*|(% style="width:591px" %)an arbitrary number of digits (of the preceding type) 798 +|(% style="width:122px" %)+|(% style="width:591px" %)at least one digit (of the preceding type) 799 +|(% style="width:122px" %)( )|(% style="width:591px" %)optional digits (specified within the brackets) 800 +|(% style="width:122px" %)\|(% style="width:591px" %)prefix for the special characters that must appear in the mask 801 +|(% style="width:122px" %)N|(% style="width:591px" %)fixed number of digits used in the preceding textual representation of the month or the day 802 +|(% style="width:122px" %) |(% style="width:591px" %) 815 815 816 816 The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 817 817
- 1750067055028-964.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.5 KB - Content
- 1750070288958-132.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.9 KB - Content
- 1750070310572-584.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content
- SUZ.Methodology.Code.MethodologyClass[0]
-
- index
-
... ... @@ -1,0 +1,1 @@ 1 +12