Last modified by Artur on 2025/09/10 11:19

From version 1.21
edited by Helena
on 2025/06/16 13:26
Change comment: There is no comment for this version
To version 5.1
edited by Helena
on 2025/06/16 13:46
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,7 +18,7 @@
18 18  
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 -== 12.2 References to SDMX artefacts from VTL statements ==
21 +== 12.2 References to SDMX artefacts from VTL statements ==
22 22  
23 23  === 12.2.1 Introduction ===
24 24  
... ... @@ -116,7 +116,7 @@
116 116  
117 117  by omitting all the non-essential parts would become simply:
118 118  
119 -> DFR  : =  DF1 + DF2
119 +> DFR : = DF1 + DF2
120 120  
121 121  The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:
122 122  
... ... @@ -256,19 +256,14 @@
256 256  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
257 257  
258 258  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
259 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
260 -
261 -Identifiers, (time) Identifier and Attributes.
262 -
259 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
263 263  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
264 264  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
265 265  
266 266  ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
267 267  
268 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
265 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
269 269  
270 -Attributes.
271 -
272 272  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
273 273  
274 274  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
... ... @@ -285,11 +285,12 @@
285 285  
286 286  Mapping table:
287 287  
288 -|**VTL**|**SDMX**
289 -|(Simple) Identifier|Dimension
290 -|(Time) Identifier|TimeDimension
291 -|Measure|Measure
292 -|Attribute|DataAttribute
283 +(% style="width:470.294px" %)
284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX**
285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension
286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension
287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure
288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute
293 293  
294 294  If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
295 295  
... ... @@ -317,11 +317,12 @@
317 317  
318 318  The summary mapping table of the **unpivot** mapping method is the following:
319 319  
320 -|**VTL**|**SDMX**
321 -|(Simple) Identifier|Dimension
322 -|(Time) Identifier|TimeDimension
323 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure
324 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
316 +(% style="width:638.294px" %)
317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX**
318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension
319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension
320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure
321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
325 325  
326 326  At observation / data point level:
327 327  
... ... @@ -343,12 +343,13 @@
343 343  
344 344  The mapping table is the following:
345 345  
346 -|VTL|SDMX
347 -|(Simple) Identifier|Dimension
348 -|(Time) Identifier|TimeDimension
349 -|Some Measures|Measure
350 -|Other Measures|DataAttribute
351 -|Attribute|DataAttribute
343 +(% style="width:467.294px" %)
344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX
345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension
346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension
347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure
348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute
349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute
352 352  
353 353  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
354 354  
... ... @@ -386,11 +386,11 @@
386 386  
387 387  Therefore, the generic name of this kind of VTL datasets would be:
388 388  
389 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue'
390 390  
391 391  Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be:
392 392  
393 -‘DF(1.0.0)/POPULATION.USA’
391 +> ‘DF(1.0.0)/POPULATION.USA’
394 394  
395 395  In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA.
396 396  
... ... @@ -404,26 +404,22 @@
404 404  
405 405  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
406 406  
407 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
408 408  
409 -basic, pivot …).
410 -
411 411  In the example above, for all the datasets of the kind
412 412  
413 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
414 414  
415 415  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
416 416  
417 -‘DF1(1.0.0)/POPULATION.USA’ :=
413 +> ‘DF1(1.0.0)/POPULATION.USA’ :=
414 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
415 +>
416 +> ‘DF1(1.0.0)/POPULATION.CANADA’ :=
417 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
418 +>
419 +> … … …
418 418  
419 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
420 -
421 -‘DF1(1.0.0)/POPULATION.CANADA’ :=
422 -
423 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
424 -
425 -… … …
426 -
427 427  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
428 428  
429 429  In the direction from SDMX to VTL it is allowed to omit the value of one or more DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
... ... @@ -432,10 +432,9 @@
432 432  
433 433  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
434 434  
435 -‘DF1(1.0.0)/POPULATION.’ :=
429 +> ‘DF1(1.0.0)/POPULATION.’ :=
430 +> DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
436 436  
437 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
438 -
439 439  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
440 440  
441 441  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations.
... ... @@ -453,41 +453,33 @@
453 453  
454 454  The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
455 455  
456 -‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
449 +> ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
457 457  
458 458  Some examples follow, for some specific values of INDICATOR and COUNTRY:
459 459  
460 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
461 -… … …
453 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
454 +> … … …
455 +> ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
456 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
457 +> … … …
462 462  
463 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
464 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
465 -… … …
466 -
467 467  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
468 468  
469 -VTL dataset   INDICATOR value COUNTRY value
461 +> VTL dataset INDICATOR value COUNTRY value
462 +>
463 +> ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
464 +> ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
465 +>
466 +> ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
467 +> ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
468 +> … … …
470 470  
471 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
472 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
473 -‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
474 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
475 -
476 -… … …
477 -
478 478  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
479 479  
480 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
481 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
482 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
483 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
484 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
485 -DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
486 -DF2bis_GDPPERCAPITA_CANADA’,
487 -… ,
488 -DF2bis_POPGROWTH_USA’,
489 -DF2bis_POPGROWTH_CANADA’
490 -…);
472 +> DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”];… … … DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”];… … … DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, DF2bis_GDPPERCAPITA_CANADA’,
473 +> … ,
474 +> DF2bis_POPGROWTH_USA’, DF2bis_POPGROWTH_CANADA’
475 +> …);
491 491  
492 492  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
493 493  
... ... @@ -499,25 +499,26 @@
499 499  
500 500  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
501 501  
502 -|VTL|SDMX
503 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
504 -|**Represented Variable**|**Concept** with a definite Representation
505 -|**Value Domain**|(((
487 +(% style="width:706.294px" %)
488 +|(% style="width:257px" %)VTL|(% style="width:446px" %)SDMX
489 +|(% style="width:257px" %)**Data Set Component**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
490 +|(% style="width:257px" %)**Represented Variable**|(% style="width:446px" %)**Concept** with a definite Representation
491 +|(% style="width:257px" %)**Value Domain**|(% style="width:446px" %)(((
506 506  **Representation** (see the Structure
507 507  Pattern in the Base Package)
508 508  )))
509 -|**Enumerated Value Domain / Code List**|**Codelist**
510 -|**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
511 -|**Described Value Domain**|(((
495 +|(% style="width:257px" %)**Enumerated Value Domain / Code List**|(% style="width:446px" %)**Codelist**
496 +|(% style="width:257px" %)**Code**|(% style="width:446px" %)**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
497 +|(% style="width:257px" %)**Described Value Domain**|(% style="width:446px" %)(((
512 512  non-enumerated** Representation**
513 513  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
514 514  )))
515 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
516 -| |to a valid **value **(for non-enumerated** **Representations)
517 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
518 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
519 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
520 -|**Set list**|This abstraction does not exist in SDMX
501 +|(% style="width:257px" %)**Value**|(% style="width:446px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
502 +|(% style="width:257px" %) |(% style="width:446px" %)to a valid **value **(for non-enumerated** **Representations)
503 +|(% style="width:257px" %)**Value Domain Subset / Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
504 +|(% style="width:257px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
505 +|(% style="width:257px" %)**Described Value Domain Subset / Described Set**|(% style="width:446px" %)This abstraction does not exist in SDMX
506 +|(% style="width:257px" %)**Set list**|(% style="width:446px" %)This abstraction does not exist in SDMX
521 521  
522 522  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
523 523  
... ... @@ -525,8 +525,10 @@
525 525  
526 526  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
527 527  
528 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
514 +> DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
529 529  
516 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
517 +
530 530  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
531 531  
532 532  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
... ... @@ -541,8 +541,9 @@
541 541  
542 542  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
543 543  
544 -[[image:1750067055028-964.png]]
545 545  
533 +[[image:1750070288958-132.png]]
534 +
546 546  **Figure 22 – VTL Data Types**
547 547  
548 548  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
... ... @@ -549,6 +549,8 @@
549 549  
550 550  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
551 551  
541 +[[image:1750070310572-584.png]]
542 +
552 552  **Figure 23 – VTL Basic Scalar Types**
553 553  
554 554  === 12.4.2 VTL basic scalar types and SDMX data types ===
... ... @@ -573,158 +573,157 @@
573 573  
574 574  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
575 575  
576 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
577 -|(((
567 +(% style="width:583.294px" %)
568 +|(% style="width:360px" %)SDMX data type (BasicComponentDataType)|(% style="width:221px" %)Default VTL basic scalar type
569 +|(% style="width:360px" %)(((
578 578  String
579 579  (string allowing any character)
580 -)))|string
581 -|(((
582 -Alpha 
583 -
572 +)))|(% style="width:221px" %)string
573 +|(% style="width:360px" %)(((
574 +Alpha
584 584  (string which only allows A-z)
585 -)))|string
586 -|(((
576 +)))|(% style="width:221px" %)string
577 +|(% style="width:360px" %)(((
587 587  AlphaNumeric
588 588  (string which only allows A-z and 0-9)
589 -)))|string
590 -|(((
580 +)))|(% style="width:221px" %)string
581 +|(% style="width:360px" %)(((
591 591  Numeric
592 -
593 593  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
594 -)))|string
595 -|(((
584 +)))|(% style="width:221px" %)string
585 +|(% style="width:360px" %)(((
596 596  BigInteger
597 597  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
598 -)))|integer
599 -|(((
588 +)))|(% style="width:221px" %)integer
589 +|(% style="width:360px" %)(((
600 600  Integer
601 601  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
602 602  (inclusive))
603 -)))|integer
604 -|(((
593 +)))|(% style="width:221px" %)integer
594 +|(% style="width:360px" %)(((
605 605  Long
606 606  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
607 607  +9223372036854775807 (inclusive))
608 -)))|integer
609 -|(((
598 +)))|(% style="width:221px" %)integer
599 +|(% style="width:360px" %)(((
610 610  Short
611 611  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
612 -)))|integer
613 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
614 -|(((
602 +)))|(% style="width:221px" %)integer
603 +|(% style="width:360px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:221px" %)number
604 +|(% style="width:360px" %)(((
615 615  Float
616 616  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
617 -)))|number
618 -|(((
607 +)))|(% style="width:221px" %)number
608 +|(% style="width:360px" %)(((
619 619  Double
620 620  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
621 -)))|number
622 -|(((
611 +)))|(% style="width:221px" %)number
612 +|(% style="width:360px" %)(((
623 623  Boolean
624 624  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
625 625  binary-valued logic: {true, false})
626 -)))|boolean
627 -|(((
616 +)))|(% style="width:221px" %)boolean
617 +|(% style="width:360px" %)(((
628 628  URI
629 629  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
630 -)))|string
631 -|(((
620 +)))|(% style="width:221px" %)string
621 +|(% style="width:360px" %)(((
632 632  Count
633 633  (an integer following a sequential pattern, increasing by 1 for each occurrence)
634 -)))|integer
635 -|(((
624 +)))|(% style="width:221px" %)integer
625 +|(% style="width:360px" %)(((
636 636  InclusiveValueRange
637 637  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
638 -)))|number
639 -|(((
628 +)))|(% style="width:221px" %)number
629 +|(% style="width:360px" %)(((
640 640  ExclusiveValueRange
641 641  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
642 -)))|number
643 -|(((
632 +)))|(% style="width:221px" %)number
633 +|(% style="width:360px" %)(((
644 644  Incremental
645 645  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
646 -)))|number
647 -|(((
636 +)))|(% style="width:221px" %)number
637 +|(% style="width:360px" %)(((
648 648  ObservationalTimePeriod
649 649  (superset of StandardTimePeriod and TimeRange)
650 -)))|time
651 -|(((
640 +)))|(% style="width:221px" %)time
641 +|(% style="width:360px" %)(((
652 652  StandardTimePeriod
653 653  (superset of BasicTimePeriod and ReportingTimePeriod)
654 -)))|time
655 -|(((
644 +)))|(% style="width:221px" %)time
645 +|(% style="width:360px" %)(((
656 656  BasicTimePeriod
657 657  (superset of GregorianTimePeriod and DateTime)
658 -)))|date
659 -|(((
648 +)))|(% style="width:221px" %)date
649 +|(% style="width:360px" %)(((
660 660  GregorianTimePeriod
661 661  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
662 -)))|date
663 -|GregorianYear (YYYY)|date
664 -|GregorianYearMonth / GregorianMonth (YYYY-MM)|date
665 -|GregorianDay (YYYY-MM-DD)|date
666 -|(((
652 +)))|(% style="width:221px" %)date
653 +|(% style="width:360px" %)GregorianYear (YYYY)|(% style="width:221px" %)date
654 +|(% style="width:360px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% style="width:221px" %)date
655 +|(% style="width:360px" %)GregorianDay (YYYY-MM-DD)|(% style="width:221px" %)date
656 +|(% style="width:360px" %)(((
667 667  ReportingTimePeriod
668 668  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
669 -)))|time_period
670 -|(((
659 +)))|(% style="width:221px" %)time_period
660 +|(% style="width:360px" %)(((
671 671  ReportingYear
672 672  (YYYY-A1 – 1 year period)
673 -)))|time_period
674 -|(((
663 +)))|(% style="width:221px" %)time_period
664 +|(% style="width:360px" %)(((
675 675  ReportingSemester
676 676  (YYYY-Ss – 6 month period)
677 -)))|time_period
678 -|(((
667 +)))|(% style="width:221px" %)time_period
668 +|(% style="width:360px" %)(((
679 679  ReportingTrimester
680 680  (YYYY-Tt – 4 month period)
681 -)))|time_period
682 -|(((
671 +)))|(% style="width:221px" %)time_period
672 +|(% style="width:360px" %)(((
683 683  ReportingQuarter
684 684  (YYYY-Qq – 3 month period)
685 -)))|time_period
686 -|(((
675 +)))|(% style="width:221px" %)time_period
676 +|(% style="width:360px" %)(((
687 687  ReportingMonth
688 688  (YYYY-Mmm – 1 month period)
689 -)))|time_period
690 -|ReportingWeek|time_period
691 -| (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
692 -|(((
679 +)))|(% style="width:221px" %)time_period
680 +|(% style="width:360px" %)ReportingWeek|(% style="width:221px" %)time_period
681 +|(% style="width:360px" %) (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% style="width:221px" %)
682 +|(% style="width:360px" %)(((
693 693  ReportingDay
694 694  (YYYY-Dddd – 1 day period)
695 -)))|time_period
696 -|(((
685 +)))|(% style="width:221px" %)time_period
686 +|(% style="width:360px" %)(((
697 697  DateTime
698 698  (YYYY-MM-DDThh:mm:ss)
699 -)))|date
700 -|(((
689 +)))|(% style="width:221px" %)date
690 +|(% style="width:360px" %)(((
701 701  TimeRange
702 702  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
703 -)))|time
704 -|(((
693 +)))|(% style="width:221px" %)time
694 +|(% style="width:360px" %)(((
705 705  Month
706 706  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
707 -)))|string
708 -|(((
697 +)))|(% style="width:221px" %)string
698 +|(% style="width:360px" %)(((
709 709  MonthDay
710 710  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
711 -)))|string
712 -|(((
701 +)))|(% style="width:221px" %)string
702 +|(% style="width:360px" %)(((
713 713  Day
714 714  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
715 -)))|string
716 -|(((
705 +)))|(% style="width:221px" %)string
706 +|(% style="width:360px" %)(((
717 717  Time
718 718  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
719 -)))|string
720 -|(((
709 +)))|(% style="width:221px" %)string
710 +|(% style="width:360px" %)(((
721 721  Duration
722 722  (corresponds to XML Schema xs:duration datatype)
723 -)))|duration
724 -|XHTML|Metadata type – not applicable
725 -|KeyValues|Metadata type – not applicable
726 -|IdentifiableReference|Metadata type – not applicable
727 -|DataSetReference|Metadata type – not applicable
713 +)))|(% style="width:221px" %)duration
714 +|(% style="width:360px" %)XHTML|(% style="width:221px" %)Metadata type – not applicable
715 +|(% style="width:360px" %)KeyValues|(% style="width:221px" %)Metadata type – not applicable
716 +|(% style="width:360px" %)IdentifiableReference|(% style="width:221px" %)Metadata type – not applicable
717 +|(% style="width:360px" %)DataSetReference|(% style="width:221px" %)Metadata type – not applicable
728 728  
729 729  **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
730 730  
... ... @@ -734,84 +734,82 @@
734 734  
735 735  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
736 736  
737 -|(((
738 -VTL basic
739 -scalar type
740 -)))|(((
727 +(% style="width:748.294px" %)
728 +|(% style="width:164px" %)(((
729 +VTL basic scalar type
730 +)))|(% style="width:304px" %)(((
741 741  Default SDMX data type
742 -(BasicComponentDataType
743 -)
744 -)))|Default output format
745 -|String|String|Like XML (xs:string)
746 -|Number|Float|Like XML (xs:float)
747 -|Integer|Integer|Like XML (xs:int)
748 -|Date|DateTime|YYYY-MM-DDT00:00:00Z
749 -|Time|StandardTimePeriod|<date>/<date> (as defined above)
750 -|time_period|(((
732 +(BasicComponentDataType)
733 +)))|(% style="width:277px" %)Default output format
734 +|(% style="width:164px" %)String|(% style="width:304px" %)String|(% style="width:277px" %)Like XML (xs:string)
735 +|(% style="width:164px" %)Number|(% style="width:304px" %)Float|(% style="width:277px" %)Like XML (xs:float)
736 +|(% style="width:164px" %)Integer|(% style="width:304px" %)Integer|(% style="width:277px" %)Like XML (xs:int)
737 +|(% style="width:164px" %)Date|(% style="width:304px" %)DateTime|(% style="width:277px" %)YYYY-MM-DDT00:00:00Z
738 +|(% style="width:164px" %)Time|(% style="width:304px" %)StandardTimePeriod|(% style="width:277px" %)<date>/<date> (as defined above)
739 +|(% style="width:164px" %)time_period|(% style="width:304px" %)(((
751 751  ReportingTimePeriod
752 752  (StandardReportingPeriod)
753 -)))|(((
742 +)))|(% style="width:277px" %)(((
754 754   YYYY-Pppp
755 755  (according to SDMX )
756 756  )))
757 -|Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
758 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
746 +|(% style="width:164px" %)Duration|(% style="width:304px" %)Duration|(% style="width:277px" %)Like XML (xs:duration) PnYnMnDTnHnMnS
747 +|(% style="width:164px" %)Boolean|(% style="width:304px" %)Boolean|(% style="width:277px" %)Like XML (xs:boolean) with the values "true" or "false"
759 759  
760 760  **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
761 761  
762 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
751 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
763 763  
764 -Transformations and Expressions of the SDMX information model).
765 -
766 766  The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table.
767 767  
768 -|(% colspan="2" %)VTL special characters for the formatting masks
769 -|(% colspan="2" %)
770 -|(% colspan="2" %)Number
771 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
772 -|E|one numeric digit (for the exponent of the scientific notation)
773 -|. (dot)|possible separator between the integer and the decimal parts.
774 -|, (comma)|possible separator between the integer and the decimal parts.
775 -| |
776 -|(% colspan="2" %)Time and duration
777 -|C|century
778 -|Y|year
779 -|S|semester
780 -|Q|quarter
781 -|M|month
782 -|W|week
783 -|D|day
784 -|h|hour digit (by default on 24 hours)
785 -|M|minute
786 -|S|second
787 -|D|decimal of second
788 -|P|period indicator (representation in one digit for the duration)
789 -|P|number of the periods specified in the period indicator
790 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm")
791 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January)
792 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday)
793 -|Month|lowercase textual representation of the month (e.g., january)
794 -|Day|lowercase textual representation of the month (e.g., monday)
795 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January)
796 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
797 -| |
798 -|(% colspan="2" %)String
799 -|X|any string character
800 -|Z|any string character from "A" to "z"
801 -|9|any string character from "0" to "9"
802 -| |
803 -|(% colspan="2" %)Boolean
804 -|B|Boolean using "true" for True and "false" for False
805 -|1|Boolean using "1" for True and "0" for False
806 -|0|Boolean using "0" for True and "1" for False
807 -| |
808 -|(% colspan="2" %)Other qualifiers
809 -|*|an arbitrary number of digits (of the preceding type)
810 -|+|at least one digit (of the preceding type)
811 -|( )|optional digits (specified within the brackets)
812 -|\|prefix for the special characters that must appear in the mask
813 -|N|fixed number of digits used in the preceding textual representation of the month or the day
814 -| |
755 +(% style="width:717.294px" %)
756 +|(% colspan="2" style="width:714px" %)VTL special characters for the formatting masks
757 +|(% colspan="2" style="width:714px" %)
758 +|(% colspan="2" style="width:714px" %)Number
759 +|(% style="width:122px" %)D|(% style="width:591px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
760 +|(% style="width:122px" %)E|(% style="width:591px" %)one numeric digit (for the exponent of the scientific notation)
761 +|(% style="width:122px" %). (dot)|(% style="width:591px" %)possible separator between the integer and the decimal parts.
762 +|(% style="width:122px" %), (comma)|(% style="width:591px" %)possible separator between the integer and the decimal parts.
763 +|(% style="width:122px" %) |(% style="width:591px" %)
764 +|(% colspan="2" style="width:714px" %)Time and duration
765 +|(% style="width:122px" %)C|(% style="width:591px" %)century
766 +|(% style="width:122px" %)Y|(% style="width:591px" %)year
767 +|(% style="width:122px" %)S|(% style="width:591px" %)semester
768 +|(% style="width:122px" %)Q|(% style="width:591px" %)quarter
769 +|(% style="width:122px" %)M|(% style="width:591px" %)month
770 +|(% style="width:122px" %)W|(% style="width:591px" %)week
771 +|(% style="width:122px" %)D|(% style="width:591px" %)day
772 +|(% style="width:122px" %)h|(% style="width:591px" %)hour digit (by default on 24 hours)
773 +|(% style="width:122px" %)M|(% style="width:591px" %)minute
774 +|(% style="width:122px" %)S|(% style="width:591px" %)second
775 +|(% style="width:122px" %)D|(% style="width:591px" %)decimal of second
776 +|(% style="width:122px" %)P|(% style="width:591px" %)period indicator (representation in one digit for the duration)
777 +|(% style="width:122px" %)P|(% style="width:591px" %)number of the periods specified in the period indicator
778 +|(% style="width:122px" %)AM/PM|(% style="width:591px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm")
779 +|(% style="width:122px" %)MONTH|(% style="width:591px" %)uppercase textual representation of the month (e.g., JANUARY for January)
780 +|(% style="width:122px" %)DAY|(% style="width:591px" %)uppercase textual representation of the day (e.g., MONDAY for Monday)
781 +|(% style="width:122px" %)Month|(% style="width:591px" %)lowercase textual representation of the month (e.g., january)
782 +|(% style="width:122px" %)Day|(% style="width:591px" %)lowercase textual representation of the month (e.g., monday)
783 +|(% style="width:122px" %)Month|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the month (e.g., January)
784 +|(% style="width:122px" %)Day|(% style="width:591px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
785 +|(% style="width:122px" %) |(% style="width:591px" %)
786 +|(% colspan="2" style="width:714px" %)String
787 +|(% style="width:122px" %)X|(% style="width:591px" %)any string character
788 +|(% style="width:122px" %)Z|(% style="width:591px" %)any string character from "A" to "z"
789 +|(% style="width:122px" %)9|(% style="width:591px" %)any string character from "0" to "9"
790 +|(% style="width:122px" %) |(% style="width:591px" %)
791 +|(% colspan="2" style="width:714px" %)Boolean
792 +|(% style="width:122px" %)B|(% style="width:591px" %)Boolean using "true" for True and "false" for False
793 +|(% style="width:122px" %)1|(% style="width:591px" %)Boolean using "1" for True and "0" for False
794 +|(% style="width:122px" %)0|(% style="width:591px" %)Boolean using "0" for True and "1" for False
795 +|(% style="width:122px" %) |(% style="width:591px" %)
796 +|(% colspan="2" style="width:714px" %)Other qualifiers
797 +|(% style="width:122px" %)*|(% style="width:591px" %)an arbitrary number of digits (of the preceding type)
798 +|(% style="width:122px" %)+|(% style="width:591px" %)at least one digit (of the preceding type)
799 +|(% style="width:122px" %)( )|(% style="width:591px" %)optional digits (specified within the brackets)
800 +|(% style="width:122px" %)\|(% style="width:591px" %)prefix for the special characters that must appear in the mask
801 +|(% style="width:122px" %)N|(% style="width:591px" %)fixed number of digits used in the preceding textual representation of the month or the day
802 +|(% style="width:122px" %) |(% style="width:591px" %)
815 815  
816 816  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
817 817  
1750067055028-964.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -5.5 KB
Content
1750070288958-132.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +45.9 KB
Content
1750070310572-584.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
SUZ.Methodology.Code.MethodologyClass[0]
index
... ... @@ -1,0 +1,1 @@
1 +12