Last modified by Artur on 2025/09/10 11:19

From version 1.22
edited by Helena
on 2025/06/16 13:27
Change comment: There is no comment for this version
To version 1.17
edited by Helena
on 2025/06/16 13:20
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -80,9 +80,9 @@
80 80  
81 81  For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as{{footnote}}Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.{{/footnote}}:
82 82  
83 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
84 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
85 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
83 +>(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
84 +>(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
85 +>(% style="font-size:16px" %) 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
86 86  
87 87  === 12.2.3 Abbreviation of the URN ===
88 88  
... ... @@ -110,47 +110,51 @@
110 110  
111 111  For example, the full formulation that uses the complete URN shown at the end of the previous paragraph:
112 112  
113 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
114 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
115 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
113 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
116 116  
115 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
116 +
117 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
118 +
117 117  by omitting all the non-essential parts would become simply:
118 118  
119 -> DFR  : =  DF1 + DF2
121 +DFR := DF1 + DF2
120 120  
121 121  The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:
122 122  
123 -> 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
125 +'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
124 124  
125 125  if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^:
126 126  
127 -> CL_FREQ
129 +CL_FREQ
128 128  
129 129  As for the references to the components, it can be enough to specify the componentId, given that the dataStructure-Id can be omitted. An example of non-abbreviated reference, if the data structure is DST1 and the component is SECTOR, is the following:
130 130  
131 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S ECTOR'
133 +'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S
132 132  
135 +ECTOR'
136 +
133 133  The corresponding fully abbreviated reference, if made from a TransformationScheme belonging to AG, would become simply:
134 134  
135 -> SECTOR
139 +SECTOR
136 136  
137 137  For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as{{footnote}}The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR is called SEC{{/footnote}}:
138 138  
139 -> 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
143 +'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
140 140  
141 141  In the references to the Concepts, which can exist for example in the definition of the VTL Rulesets, at least the conceptScheme-id and the concept-id must be specified.
142 142  
143 143  An example of non-abbreviated reference, if the conceptScheme-id is CS1 and the concept-id is SECTOR, is the following:
144 144  
145 -> 'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
149 +'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
146 146  
147 147  The corresponding fully abbreviated reference, if made from a RulesetScheme belonging to AG, would become simply:
148 148  
149 -> CS1(1.0.0).SECTOR
153 +CS1(1.0.0).SECTOR
150 150  
151 151  The Codes and in general all the Values can be written without any other specification, for example, the transformation to check if the values of the measures of the Dataflow DF1 are between 0 and 25000 can be written like follows:
152 152  
153 -> 'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
157 +'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
154 154  
155 155  The artefact (Component, Concept, Codelist …) which the Values are referred to can be deduced from the context in which the reference is made, taking also into account the VTL syntax. In the Transformation above, for example, the values 0 and 2500 are compared to the values of the measures of DF1(1.0.0).
156 156  
... ... @@ -198,7 +198,7 @@
198 198  
199 199  The possible mapping options are described in more detail in the following sections.
200 200  
201 -=== 12.3.3 Mapping from SDMX to VTL data structures ===
205 +=== 12.3.2 Mapping from SDMX to VTL data structures ===
202 202  
203 203  ==== 12.3.3.1 Basic Mapping ====
204 204  
... ... @@ -206,12 +206,11 @@
206 206  
207 207  When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
208 208  
209 -(% style="width:468.294px" %)
210 -|(% style="width:196px" %)**SDMX**|(% style="width:269px" %)**VTL**
211 -|(% style="width:196px" %)Dimension|(% style="width:269px" %)(Simple) Identifier
212 -|(% style="width:196px" %)TimeDimension|(% style="width:269px" %)(Time) Identifier
213 -|(% style="width:196px" %)Measure|(% style="width:269px" %)Measure
214 -|(% style="width:196px" %)DataAttribute|(% style="width:269px" %)Attribute
213 +|**SDMX**|**VTL**
214 +|Dimension|(Simple) Identifier
215 +|TimeDimension|(Time) Identifier
216 +|Measure|Measure
217 +|DataAttribute|Attribute
215 215  
216 216  The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
217 217  
... ... @@ -221,8 +221,10 @@
221 221  
222 222  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
223 223  
224 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
227 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the
225 225  
229 +MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
230 +
226 226  Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension.
227 227  
228 228  If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph).
... ... @@ -235,18 +235,16 @@
235 235  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
236 236  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
237 237  ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
238 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
239 -** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
243 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
240 240  
241 241  The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
242 242  
243 -(% style="width:739.294px" %)
244 -|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL**
245 -|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier
246 -|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier
247 -|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension
248 -|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute
249 -|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)(((
247 +|**SDMX**|**VTL**
248 +|Dimension|(Simple) Identifier
249 +|TimeDimension|(Time) Identifier
250 +|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension
251 +|DataAttribute not depending on the MeasureDimension|Attribute
252 +|DataAttribute depending on the MeasureDimension|(((
250 250  One Attribute for each Code of the
251 251  SDMX MeasureDimension
252 252  )))
... ... @@ -256,14 +256,19 @@
256 256  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
257 257  
258 258  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
259 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
262 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
263 +
264 +Identifiers, (time) Identifier and Attributes.
265 +
260 260  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
261 261  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
262 262  
263 263  ==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
264 264  
265 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
271 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
266 266  
273 +Attributes.
274 +
267 267  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
268 268  
269 269  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.