Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Artur on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -280,11 +280,12 @@ 280 280 281 281 Mapping table: 282 282 283 -|**VTL**|**SDMX** 284 -|(Simple) Identifier|Dimension 285 -|(Time) Identifier|TimeDimension 286 -|Measure|Measure 287 -|Attribute|DataAttribute 283 +(% style="width:470.294px" %) 284 +|(% style="width:262px" %)**VTL**|(% style="width:205px" %)**SDMX** 285 +|(% style="width:262px" %)(Simple) Identifier|(% style="width:205px" %)Dimension 286 +|(% style="width:262px" %)(Time) Identifier|(% style="width:205px" %)TimeDimension 287 +|(% style="width:262px" %)Measure|(% style="width:205px" %)Measure 288 +|(% style="width:262px" %)Attribute|(% style="width:205px" %)DataAttribute 288 288 289 289 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 290 290 ... ... @@ -312,11 +312,12 @@ 312 312 313 313 The summary mapping table of the **unpivot** mapping method is the following: 314 314 315 -|**VTL**|**SDMX** 316 -|(Simple) Identifier|Dimension 317 -|(Time) Identifier|TimeDimension 318 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 319 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 316 +(% style="width:638.294px" %) 317 +|(% style="width:200px" %)**VTL**|(% style="width:435px" %)**SDMX** 318 +|(% style="width:200px" %)(Simple) Identifier|(% style="width:435px" %)Dimension 319 +|(% style="width:200px" %)(Time) Identifier|(% style="width:435px" %)TimeDimension 320 +|(% style="width:200px" %)All Measure Components|(% style="width:435px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 321 +|(% style="width:200px" %)Attribute|(% style="width:435px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 320 320 321 321 At observation / data point level: 322 322 ... ... @@ -338,12 +338,13 @@ 338 338 339 339 The mapping table is the following: 340 340 341 -|VTL|SDMX 342 -|(Simple) Identifier|Dimension 343 -|(Time) Identifier|TimeDimension 344 -|Some Measures|Measure 345 -|Other Measures|DataAttribute 346 -|Attribute|DataAttribute 343 +(% style="width:467.294px" %) 344 +|(% style="width:214px" %)VTL|(% style="width:250px" %)SDMX 345 +|(% style="width:214px" %)(Simple) Identifier|(% style="width:250px" %)Dimension 346 +|(% style="width:214px" %)(Time) Identifier|(% style="width:250px" %)TimeDimension 347 +|(% style="width:214px" %)Some Measures|(% style="width:250px" %)Measure 348 +|(% style="width:214px" %)Other Measures|(% style="width:250px" %)DataAttribute 349 +|(% style="width:214px" %)Attribute|(% style="width:250px" %)DataAttribute 347 347 348 348 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 349 349 ... ... @@ -381,11 +381,11 @@ 381 381 382 382 Therefore, the generic name of this kind of VTL datasets would be: 383 383 384 -'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 387 +> 'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 385 385 386 386 Where DF(1.0.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and COUNTRY dimensions. Instead the specific name of one of these VTL datasets would be: 387 387 388 -‘DF(1.0.0)/POPULATION.USA’ 391 +> ‘DF(1.0.0)/POPULATION.USA’ 389 389 390 390 In particular, this is the VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which //INDICATOR// = POPULATION and //COUNTRY// = USA. 391 391 ... ... @@ -399,13 +399,11 @@ 399 399 400 400 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 401 401 402 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 405 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 403 403 404 -basic, pivot …). 405 - 406 406 In the example above, for all the datasets of the kind 407 407 408 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 409 +> ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 409 409 410 410 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 411 411