Last modified by Artur on 2025/09/10 11:19

From version 1.22
edited by Helena
on 2025/06/16 13:27
Change comment: There is no comment for this version
To version 1.9
edited by Helena
on 2025/06/16 12:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -2,9 +2,10 @@
2 2  {{toc/}}
3 3  {{/box}}
4 4  
5 -== 12.1 Introduction ==
5 +1.
6 +11. Introduction
6 6  
7 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones{{footnote}}The Validation and Transformation Language is a standard language designed and published under the SDMX initiative. VTL is described in the VTL User and Reference Guides available on the SDMX website https://sdmx.org.{{/footnote}}. The purpose of the VTL in the SDMX context is to enable the:
8 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]](%%). The purpose of the VTL in the SDMX context is to enable the:
8 8  
9 9  * definition of validation and transformation algorithms, in order to specify how to calculate new data from existing ones;
10 10  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -12,31 +12,33 @@
12 12  
13 13  It is important to note that the VTL has its own information model (IM), derived from the Generic Statistical Information Model (GSIM) and described in the VTL User Guide. The VTL IM is designed to be compatible with more standards, like SDMX, DDI (Data Documentation Initiative) and GSIM, and includes the model artefacts that can be manipulated (inputs and/or outputs of Transformations, e.g. "Data Set", "Data Structure") and the model artefacts that allow the definition of the transformation algorithms (e.g. "Transformation", "Transformation Scheme").
14 14  
15 -The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New.{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 +The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%). Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 17  The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
18 18  
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 -== 12.2 References to SDMX artefacts from VTL statements ==
22 +1.
23 +11. References to SDMX artefacts from VTL statements
24 +111. Introduction
22 22  
23 -=== 12.2.1 Introduction ===
24 -
25 25  The VTL can manipulate SDMX artefacts (or objects) by referencing them through predefined conventional names (aliases).
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
30 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) or User Defined Operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
30 30  
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
34 34  
35 -=== 12.2.2 References through the URN ===
36 +1.
37 +11.
38 +111. References through the URN
36 36  
37 37  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
38 38  
39 -The SDMX URN{{footnote}}For a complete description of the structure of the URN see the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.2 ("Universal Resource Name (URN)").{{/footnote}}(% style="font-size:12px" %) (%%)is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:
42 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:
40 40  
41 41  * SDMXprefix
42 42  * SDMX-IM-package-name
... ... @@ -44,13 +44,15 @@
44 44  * agency-id
45 45  * maintainedobject-id
46 46  * maintainedobject-version
47 -* container-object-id{{footnote}}The container-object-id can repeat and may not be present.{{/footnote}}
50 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]]
48 48  * object-id
49 49  
50 50  The generic structure of the URN is the following:
51 51  
52 -SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id (maintainedobject-version).*container-object-id.object-id
55 +SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id
53 53  
57 +(maintainedobject-version).*container-object-id.object-id
58 +
54 54  The **SDMXprefix** is "urn:sdmx:org", always the same for all SDMX artefacts.
55 55  
56 56  The SDMX-IM-package-name** **is the concatenation of the string** **"sdmx.infomodel." with the package-name, which the artefact belongs to. For example, for referencing a Dataflow the SDMX-IM-package-name is "sdmx.infomodel.datastructure", because the class Dataflow belongs to the package "datastructure".
... ... @@ -59,7 +59,7 @@
59 59  
60 60  The agency-id is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is "ESTAT"). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
61 61  
62 -The maintainedobject-id is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable{{footnote}}i.e., the artefact belongs to a maintainable class{{/footnote}}, coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
67 +The maintainedobject-id is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
63 63  
64 64  * if the artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id);
65 65  * if the artefact is a Dimension, Measure, TimeDimension or DataAttribute, which are not maintainable and belong to the
... ... @@ -71,21 +71,28 @@
71 71  
72 72  The maintainedobject-version is the version, according to the SDMX versioning rules, of the maintained object which the artefact belongs to (for example, possible versions might be 1.0, 2.3, 1.0.0, 2.1.0 or 3.1.2).
73 73  
74 -The container-object-id does not apply to the classes that can be referenced in VTL Transformations, therefore is not present in their URN.
79 +The container-object-id does not apply to the classes that can be referenced in VTL Transformations, therefore is not present in their URN
75 75  
76 76  The object-id is the name of the non-maintainable artefact (when the artefact is maintainable its name is already specified as the maintainedobject-id, see above), in particular it has to be specified:
77 77  
78 -* if the artefact is a Dimension, TimeDimension, Measure or DataAttribute (the object-id is the name of one of the artefacts above, which are data structure components)
83 +* if the artefact is a Dimension, TimeDimension, Measure or
84 +
85 +DataAttribute (the object-id is the name of one of the artefacts above, which are data structure components)
86 +
79 79  * if the artefact is a Concept (the object-id is the name of the Concept)
80 80  
81 -For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as{{footnote}}Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.{{/footnote}}:
89 +For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]](%%):
82 82  
83 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
84 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
85 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
91 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <-
86 86  
87 -=== 12.2.3 Abbreviation of the URN ===
93 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
88 88  
95 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
96 +
97 +1.
98 +11.
99 +111. Abbreviation of the URN
100 +
89 89  The complete formulation of the URN described above is exhaustive but verbose, even for very simple statements. In order to reduce the verbosity through a simplified identifier and make the work of transformation definers easier, proper abbreviations of the URN are possible. Using this approach, the referenced artefacts remain intelligible in the VTL code by a human reader.
90 90  
91 91  The URN can be abbreviated by omitting the parts that are not essential for the identification of the artefact or that can be deduced from other available information, including the context in which the invocation is made. The possible abbreviations are described below.
... ... @@ -92,14 +92,15 @@
92 92  
93 93  * The SDMXprefix can be omitted for all the SDMX objects, because it is a prefixed string (urn:sdmx:org), always the same for SDMX objects.
94 94  * The SDMX-IM-package-name** **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is:
95 -** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute,
96 -** "conceptscheme" for the class Concept,
97 -** "codelist" for the class Codelist.
98 -* The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator{{footnote}}For the syntax of the VTL operators see the VTL Reference Manual{{/footnote}}, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}In case the invoked artefact is a VTL component, which can be invoked only within the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name (e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced from the data structure of the SDMX Dataflow, which the component belongs to.{{/footnote}}.
107 +** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute, o "conceptscheme" for the class Concept, o "codelist" for the class Codelist.
108 +* The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}In case the invoked artefact is a VTL component, which can be invoked only within the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name (e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced from the data structure of the SDMX Dataflow, which the component belongs to.{{/footnote}}.
99 99  * If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency{{footnote}}If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is considered different even if only part of the composite name is different (for example AgencyA.Dept1.Unit3 is a different Agency than the previous one). Moreover the agency-id cannot be omitted in part (i.e., if a TransformationScheme owned by AgencyA.Dept1.Unit2 references an artefact coming from AgencyA.Dept1.Unit3, the specification of the agency-id becomes mandatory and must be complete, without omitting the possibly equal parts like AgencyA.Dept1){{/footnote}}. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements).
100 -* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted:
101 -** if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
102 -** if the referenced artefact is a Dimension, TimeDimension, Measure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions;
110 +* As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
111 +** if the referenced artefact is a Dimension, TimeDimension, Measure,
112 +
113 +DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions;
114 +
115 +*
103 103  ** if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class, the maintained object is the conceptScheme-id and cannot be omitted;
104 104  ** if the referenced artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the codelist-id and obviously cannot be omitted.
105 105  * When the maintainedobject-id is omitted, the maintainedobject-version is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.
... ... @@ -110,57 +110,65 @@
110 110  
111 111  For example, the full formulation that uses the complete URN shown at the end of the previous paragraph:
112 112  
113 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
114 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
115 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
126 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' :=
116 116  
128 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' +
129 +
130 +'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)'
131 +
117 117  by omitting all the non-essential parts would become simply:
118 118  
119 -> DFR  : =  DF1 + DF2
134 +DFR := DF1 + DF2
120 120  
121 121  The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is{{footnote}}Single quotes are needed because this reference is not a VTL regular name. 19 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:
122 122  
123 -> 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
138 +'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
124 124  
125 125  if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^:
126 126  
127 -> CL_FREQ
142 +CL_FREQ
128 128  
129 129  As for the references to the components, it can be enough to specify the componentId, given that the dataStructure-Id can be omitted. An example of non-abbreviated reference, if the data structure is DST1 and the component is SECTOR, is the following:
130 130  
131 -> 'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S ECTOR'
146 +'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0.0).S
132 132  
148 +ECTOR'
149 +
133 133  The corresponding fully abbreviated reference, if made from a TransformationScheme belonging to AG, would become simply:
134 134  
135 -> SECTOR
152 +SECTOR
136 136  
137 137  For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as{{footnote}}The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR is called SEC{{/footnote}}:
138 138  
139 -> 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
156 +'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
140 140  
141 141  In the references to the Concepts, which can exist for example in the definition of the VTL Rulesets, at least the conceptScheme-id and the concept-id must be specified.
142 142  
143 143  An example of non-abbreviated reference, if the conceptScheme-id is CS1 and the concept-id is SECTOR, is the following:
144 144  
145 -> 'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
162 +'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR'
146 146  
147 147  The corresponding fully abbreviated reference, if made from a RulesetScheme belonging to AG, would become simply:
148 148  
149 -> CS1(1.0.0).SECTOR
166 +CS1(1.0.0).SECTOR
150 150  
151 151  The Codes and in general all the Values can be written without any other specification, for example, the transformation to check if the values of the measures of the Dataflow DF1 are between 0 and 25000 can be written like follows:
152 152  
153 -> 'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
170 +'DFR(1.0.0)' := between ( 'DF1(1.0.0)', 0, 25000 )
154 154  
155 155  The artefact (Component, Concept, Codelist …) which the Values are referred to can be deduced from the context in which the reference is made, taking also into account the VTL syntax. In the Transformation above, for example, the values 0 and 2500 are compared to the values of the measures of DF1(1.0.0).
156 156  
157 -=== 12.2.4 User-defined alias ===
174 +1.
175 +11.
176 +111. User-defined alias
158 158  
159 159  The third possibility for referencing SDMX artefacts from VTL statements is to use user-defined aliases not related to the SDMX URN of the artefact.
160 160  
161 161  This approach gives preference to the use of symbolic names for the SDMX artefacts. As a consequence, in the VTL code the referenced artefacts may become not directly intelligible by a human reader. In any case, the VTL aliases are associated to the SDMX URN through the VtlMappingScheme and VtlMapping classes. These classes provide for structured references to SDMX artefacts whatever kind of reference is used in VTL statements (URN, abbreviated URN or user-defined aliases).
162 162  
163 -=== 12.2.5 References to SDMX artefacts from VTL Rulesets ===
182 +1.
183 +11.
184 +111. References to SDMX artefacts from VTL Rulesets
164 164  
165 165  The VTL Rulesets allow defining sets of reusable Rules that can be applied by some VTL operators, like the ones for validation and hierarchical roll-up. A "Rule" consists in a relationship between Values belonging to some Value Domains or taken by some Variables, for example: (i) when the Country is USA then the Currency is USD; (ii) the Benelux is composed by Belgium, Luxembourg, Netherlands.
166 166  
... ... @@ -172,10 +172,10 @@
172 172  
173 173  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact, which the Values are referred (Codelist, Concept) to can be deduced from the Ruleset signature.
174 174  
175 -== 12.3 Mapping between SDMX and VTL artefacts ==
196 +1.
197 +11. Mapping between SDMX and VTL artefacts
198 +111. When the mapping occurs
176 176  
177 -=== 12.3.1. When the mapping occurs ===
178 -
179 179  The mapping methods between the VTL and SDMX object classes allow transforming a SDMX definition in a VTL one and vice-versa for the artefacts to be manipulated. It should be remembered that VTL programs (i.e. Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformations (nameable artefacts). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result: the input operands of the expression and the result can be SDMX artefacts. Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition.
180 180  
181 181  In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged{{footnote}}If a calculated artefact is persistent, it needs a persistent definition, i.e. a SDMX definition in a SDMX environment. In addition, possible calculated artefact that are not persistent may require a SDMX definition, for example when the result of a nonpersistent calculation is disseminated through SDMX tools (like an inquiry tool).{{/footnote}}.
... ... @@ -182,7 +182,9 @@
182 182  
183 183  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the ‘usage’ and ‘attributeRelationship’ for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part).
184 184  
185 -=== 12.3.2 General mapping of VTL and SDMX data structures ===
206 +1.
207 +11.
208 +111. General mapping of VTL and SDMX data structures
186 186  
187 187  This section makes reference to the VTL "Model for data and their structure"{{footnote}}See the VTL 2.0 User Manual{{/footnote}} and the correspondent SDMX "Data Structure Definition"{{footnote}}See the SDMX Standards Section 2 – Information Model{{/footnote}}.
188 188  
... ... @@ -198,31 +198,34 @@
198 198  
199 199  The possible mapping options are described in more detail in the following sections.
200 200  
201 -=== 12.3.3 Mapping from SDMX to VTL data structures ===
224 +1.
225 +11.
226 +111. Mapping from SDMX to VTL data structures
202 202  
203 -==== 12.3.3.1 Basic Mapping ====
228 +**12.3.3.1 Basic Mapping**
204 204  
205 205  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes.
206 206  
207 207  When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
208 208  
209 -(% style="width:468.294px" %)
210 -|(% style="width:196px" %)**SDMX**|(% style="width:269px" %)**VTL**
211 -|(% style="width:196px" %)Dimension|(% style="width:269px" %)(Simple) Identifier
212 -|(% style="width:196px" %)TimeDimension|(% style="width:269px" %)(Time) Identifier
213 -|(% style="width:196px" %)Measure|(% style="width:269px" %)Measure
214 -|(% style="width:196px" %)DataAttribute|(% style="width:269px" %)Attribute
234 +|**SDMX**|**VTL**
235 +|Dimension|(Simple) Identifier
236 +|TimeDimension|(Time) Identifier
237 +|Measure|Measure
238 +|DataAttribute|Attribute
215 215  
216 216  The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
217 217  
218 218  With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point.
219 219  
220 -==== 12.3.3.2 Pivot Mapping ====
244 +**12.3.3.2 Pivot Mapping**
221 221  
222 222  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
223 223  
224 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
248 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the
225 225  
250 +MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
251 +
226 226  Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension.
227 227  
228 228  If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph).
... ... @@ -235,19 +235,18 @@
235 235  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
236 236  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
237 237  ** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
238 -** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
239 -** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
264 +** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). o Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
240 240  
241 241  The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
242 242  
243 -(% style="width:739.294px" %)
244 -|(% style="width:335px" %)**SDMX**|(% style="width:400px" %)**VTL**
245 -|(% style="width:335px" %)Dimension|(% style="width:400px" %)(Simple) Identifier
246 -|(% style="width:335px" %)TimeDimension|(% style="width:400px" %)(Time) Identifier
247 -|(% style="width:335px" %)MeasureDimension & one Measure|(% style="width:400px" %)One Measure for each Code of the SDMX MeasureDimension
248 -|(% style="width:335px" %)DataAttribute not depending on the MeasureDimension|(% style="width:400px" %)Attribute
249 -|(% style="width:335px" %)DataAttribute depending on the MeasureDimension|(% style="width:400px" %)(((
268 +|**SDMX**|**VTL**
269 +|Dimension|(Simple) Identifier
270 +|TimeDimension|(Time) Identifier
271 +|MeasureDimension & one Measure|One Measure for each Code of the SDMX MeasureDimension
272 +|DataAttribute not depending on the MeasureDimension|Attribute
273 +|DataAttribute depending on the MeasureDimension|(((
250 250  One Attribute for each Code of the
275 +
251 251  SDMX MeasureDimension
252 252  )))
253 253  
... ... @@ -256,21 +256,31 @@
256 256  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
257 257  
258 258  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
259 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
260 -* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
284 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
285 +
286 +Identifiers, (time) Identifier and Attributes.
287 +
288 +* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure
289 +
290 +Cj
291 +
261 261  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
262 262  
263 -==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
294 +**12.3.3.3 From SDMX DataAttributes to VTL Measures**
264 264  
265 -* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
296 +* In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
266 266  
298 +Attributes.
299 +
267 267  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
268 268  
269 269  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
270 270  
271 -=== 12.3.4 Mapping from VTL to SDMX data structures ===
304 +1.
305 +11.
306 +111. Mapping from VTL to SDMX data structures
272 272  
273 -==== 12.3.4.1 Basic Mapping ====
308 +**12.3.4.1 Basic Mapping**
274 274  
275 275  The main mapping method **from VTL to SDMX** is called **Basic **mapping as well.
276 276  
... ... @@ -294,7 +294,7 @@
294 294  
295 295  As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
296 296  
297 -==== 12.3.4.2 Unpivot Mapping ====
332 +**12.3.4.2 Unpivot Mapping**
298 298  
299 299  An alternative mapping method from VTL to SDMX is the **Unpivot **mapping.
300 300  
... ... @@ -330,7 +330,7 @@
330 330  
331 331  In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
332 332  
333 -==== 12.3.4.3 From VTL Measures to SDMX Data Attributes ====
368 +**12.3.4.3 From VTL Measures to SDMX Data Attributes**
334 334  
335 335  More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”).
336 336  
... ... @@ -347,7 +347,9 @@
347 347  
348 348  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
349 349  
350 -=== 12.3.5 Declaration of the mapping methods between data structures ===
385 +1.
386 +11.
387 +111. Declaration of the mapping methods between data structures
351 351  
352 352  In order to define and understand properly VTL Transformations, the applied mapping methods must be specified in the SDMX structural metadata. If the default mapping method (Basic) is applied, no specification is needed.
353 353  
... ... @@ -357,10 +357,14 @@
357 357  
358 358  The VtlMappingScheme is a container for zero or more VtlDataflowMapping (it may contain also mappings towards artefacts other than dataflows).
359 359  
360 -=== 12.3.6 Mapping dataflow subsets to distinct VTL Data Sets ===
397 +1.
398 +11.
399 +111. Mapping dataflow subsets to distinct VTL Data Sets
361 361  
362 -Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
401 +Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations
363 363  
403 +(corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
404 +
364 364  As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}}
365 365  
366 366  Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union” …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}}
... ... @@ -453,10 +453,13 @@
453 453  Some examples follow, for some specific values of INDICATOR and COUNTRY:
454 454  
455 455  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
497 +
456 456  … … …
457 457  
458 458  ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
501 +
459 459  ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
503 +
460 460  … … …
461 461  
462 462  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
... ... @@ -463,9 +463,13 @@
463 463  
464 464  VTL dataset   INDICATOR value COUNTRY value
465 465  
510 +
466 466  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
512 +
467 467  ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
514 +
468 468  ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
516 +
469 469  ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
470 470  
471 471  … … …
... ... @@ -473,15 +473,25 @@
473 473  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
474 474  
475 475  DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
524 +
476 476  DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
526 +
477 477  DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
528 +
478 478  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
530 +
479 479  DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
532 +
480 480  DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
534 +
481 481  DF2bis_GDPPERCAPITA_CANADA’,
536 +
482 482  … ,
538 +
483 483  DF2bis_POPGROWTH_USA’,
540 +
484 484  DF2bis_POPGROWTH_CANADA’
542 +
485 485  …);
486 486  
487 487  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -490,7 +490,9 @@
490 490  
491 491  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
492 492  
493 -=== 12.3.7 Mapping variables and value domains between VTL and SDMX ===
551 +1.
552 +11.
553 +111. Mapping variables and value domains between VTL and SDMX
494 494  
495 495  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
496 496  
... ... @@ -499,6 +499,7 @@
499 499  |**Represented Variable**|**Concept** with a definite Representation
500 500  |**Value Domain**|(((
501 501  **Representation** (see the Structure
562 +
502 502  Pattern in the Base Package)
503 503  )))
504 504  |**Enumerated Value Domain / Code List**|**Codelist**
... ... @@ -505,6 +505,7 @@
505 505  |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
506 506  |**Described Value Domain**|(((
507 507  non-enumerated** Representation**
569 +
508 508  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
509 509  )))
510 510  |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
... ... @@ -528,10 +528,10 @@
528 528  
529 529  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
530 530  
531 -== 12.4 Mapping between SDMX and VTL Data Types ==
593 +1.
594 +11. Mapping between SDMX and VTL Data Types
595 +111. VTL Data types
532 532  
533 -=== 12.4.1 VTL Data types ===
534 -
535 535  According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors.
536 536  
537 537  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
... ... @@ -538,15 +538,17 @@
538 538  
539 539  [[image:1750067055028-964.png]]
540 540  
541 -**Figure 22 – VTL Data Types**
603 +==== Figure 22 – VTL Data Types ====
542 542  
543 543  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
544 544  
545 545  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
546 546  
547 -**Figure 23 – VTL Basic Scalar Types**
609 +==== Figure 23 – VTL Basic Scalar Types ====
548 548  
549 -=== 12.4.2 VTL basic scalar types and SDMX data types ===
611 +1.
612 +11.
613 +111. VTL basic scalar types and SDMX data types
550 550  
551 551  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
552 552  
... ... @@ -564,7 +564,9 @@
564 564  
565 565  The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact.
566 566  
567 -=== 12.4.3 Mapping SDMX data types to VTL basic scalar types ===
631 +1.
632 +11.
633 +111. Mapping SDMX data types to VTL basic scalar types
568 568  
569 569  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
570 570  
... ... @@ -571,6 +571,7 @@
571 571  |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
572 572  |(((
573 573  String
640 +
574 574  (string allowing any character)
575 575  )))|string
576 576  |(((
... ... @@ -580,6 +580,7 @@
580 580  )))|string
581 581  |(((
582 582  AlphaNumeric
650 +
583 583  (string which only allows A-z and 0-9)
584 584  )))|string
585 585  |(((
... ... @@ -589,70 +589,89 @@
589 589  )))|string
590 590  |(((
591 591  BigInteger
660 +
592 592  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
593 593  )))|integer
594 594  |(((
595 595  Integer
665 +
596 596  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
667 +
597 597  (inclusive))
598 598  )))|integer
599 599  |(((
600 600  Long
672 +
601 601  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
674 +
602 602  +9223372036854775807 (inclusive))
603 603  )))|integer
604 604  |(((
605 605  Short
679 +
606 606  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
607 607  )))|integer
608 608  |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
609 609  |(((
610 610  Float
685 +
611 611  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
612 612  )))|number
613 613  |(((
614 614  Double
690 +
615 615  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
616 616  )))|number
617 617  |(((
618 618  Boolean
695 +
619 619  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
697 +
620 620  binary-valued logic: {true, false})
621 621  )))|boolean
622 622  |(((
623 623  URI
702 +
624 624  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
625 625  )))|string
626 626  |(((
627 627  Count
707 +
628 628  (an integer following a sequential pattern, increasing by 1 for each occurrence)
629 629  )))|integer
630 630  |(((
631 631  InclusiveValueRange
712 +
632 632  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
633 633  )))|number
634 634  |(((
635 635  ExclusiveValueRange
717 +
636 636  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
637 637  )))|number
638 638  |(((
639 639  Incremental
722 +
640 640  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
641 641  )))|number
642 642  |(((
643 643  ObservationalTimePeriod
727 +
644 644  (superset of StandardTimePeriod and TimeRange)
645 645  )))|time
646 646  |(((
647 647  StandardTimePeriod
732 +
648 648  (superset of BasicTimePeriod and ReportingTimePeriod)
649 649  )))|time
650 650  |(((
651 651  BasicTimePeriod
737 +
652 652  (superset of GregorianTimePeriod and DateTime)
653 653  )))|date
654 654  |(((
655 655  GregorianTimePeriod
742 +
656 656  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
657 657  )))|date
658 658  |GregorianYear (YYYY)|date
... ... @@ -660,26 +660,32 @@
660 660  |GregorianDay (YYYY-MM-DD)|date
661 661  |(((
662 662  ReportingTimePeriod
750 +
663 663  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
664 664  )))|time_period
665 665  |(((
666 666  ReportingYear
755 +
667 667  (YYYY-A1 – 1 year period)
668 668  )))|time_period
669 669  |(((
670 670  ReportingSemester
760 +
671 671  (YYYY-Ss – 6 month period)
672 672  )))|time_period
673 673  |(((
674 674  ReportingTrimester
765 +
675 675  (YYYY-Tt – 4 month period)
676 676  )))|time_period
677 677  |(((
678 678  ReportingQuarter
770 +
679 679  (YYYY-Qq – 3 month period)
680 680  )))|time_period
681 681  |(((
682 682  ReportingMonth
775 +
683 683  (YYYY-Mmm – 1 month period)
684 684  )))|time_period
685 685  |ReportingWeek|time_period
... ... @@ -686,34 +686,42 @@
686 686  | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
687 687  |(((
688 688  ReportingDay
782 +
689 689  (YYYY-Dddd – 1 day period)
690 690  )))|time_period
691 691  |(((
692 692  DateTime
787 +
693 693  (YYYY-MM-DDThh:mm:ss)
694 694  )))|date
695 695  |(((
696 696  TimeRange
792 +
697 697  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
698 698  )))|time
699 699  |(((
700 700  Month
797 +
701 701  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
702 702  )))|string
703 703  |(((
704 704  MonthDay
802 +
705 705  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
706 706  )))|string
707 707  |(((
708 708  Day
807 +
709 709  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
710 710  )))|string
711 711  |(((
712 712  Time
812 +
713 713  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
714 714  )))|string
715 715  |(((
716 716  Duration
817 +
717 717  (corresponds to XML Schema xs:duration datatype)
718 718  )))|duration
719 719  |XHTML|Metadata type – not applicable
... ... @@ -721,20 +721,27 @@
721 721  |IdentifiableReference|Metadata type – not applicable
722 722  |DataSetReference|Metadata type – not applicable
723 723  
724 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
825 +додол
725 725  
827 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
828 +
726 726  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
727 727  
728 -=== 12.4.4 Mapping VTL basic scalar types to SDMX data types ===
831 +1.
832 +11.
833 +111. Mapping VTL basic scalar types to SDMX data types
729 729  
730 730  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
731 731  
732 732  |(((
733 733  VTL basic
839 +
734 734  scalar type
735 735  )))|(((
736 736  Default SDMX data type
843 +
737 737  (BasicComponentDataType
845 +
738 738  )
739 739  )))|Default output format
740 740  |String|String|Like XML (xs:string)
... ... @@ -744,15 +744,17 @@
744 744  |Time|StandardTimePeriod|<date>/<date> (as defined above)
745 745  |time_period|(((
746 746  ReportingTimePeriod
855 +
747 747  (StandardReportingPeriod)
748 748  )))|(((
749 749   YYYY-Pppp
859 +
750 750  (according to SDMX )
751 751  )))
752 752  |Duration|Duration|Like XML (xs:duration) PnYnMnDTnHnMnS
753 753  |Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
754 754  
755 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
865 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
756 756  
757 757  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section
758 758  
... ... @@ -810,13 +810,17 @@
810 810  
811 811  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
812 812  
813 -=== 12.4.3 Null Values ===
923 +1.
924 +11.
925 +111. Null Values
814 814  
815 815  In the conversions from SDMX to VTL it is assumed by default that a missing value in SDMX becomes a NULL in VTL. After the conversion, the NULLs can be manipulated through the proper VTL operators.
816 816  
817 817  On the other side, the VTL programs can produce in output NULL values for Measures and Attributes (Null values are not allowed in the Identifiers). In the conversion from VTL to SDMX, it is assumed that a NULL in VTL becomes a missing value in SDMX. In the conversion from VTL to SDMX, the default assumption can be overridden, separately for each VTL basic scalar type, by specifying which the value that represents the NULL in SDMX is. This can be specified in the attribute "nullValue" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). A CustomType belongs to a CustomTypeScheme, which can be referenced by one or more TransformationScheme (i.e. VTL programs). The overriding assumption is applied for all the SDMX Dataflows calculated in the TransformationScheme.
818 818  
819 -=== 12.4.5 Format of the literals used in VTL Transformations ===
931 +1.
932 +11.
933 +111. Format of the literals used in VTL Transformations
820 820  
821 821  The VTL programs can contain literals, i.e. specific values of certain data types written directly in the VTL definitions or expressions. The VTL does not prescribe a specific format for the literals and leave the specific VTL systems and the definers of VTL Transformations free of using their preferred formats.
822 822  
... ... @@ -830,6 +830,26 @@
830 830  
831 831  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
832 832  
947 +
833 833  ----
834 834  
950 +[[~[1~]>>path:#_ftnref1]] The Validation and Transformation Language is a standard language designed and published under the SDMX initiative. VTL is described in the VTL User and Reference Guides available on the SDMX website [[https:~~/~~/sdmx.org>>url:https://sdmx.org/]][[.>>url:https://sdmx.org/]]
951 +
952 +[[~[2~]>>path:#_ftnref2]] In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New
953 +
954 +[[~[3~]>>path:#_ftnref3]] See also the section "VTL-DL Rulesets" in the VTL Reference Manual.
955 +
956 +[[~[4~]>>path:#_ftnref4]] The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.
957 +
958 +[[~[5~]>>path:#_ftnref5]] For a complete description of the structure of the URN see the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.2 ("Universal Resource Name (URN)").
959 +
960 +[[~[6~]>>path:#_ftnref6]] The container-object-id can repeat and may not be present.
961 +
962 +[[~[7~]>>path:#_ftnref7]] i.e., the artefact belongs to a maintainable class
963 +
964 +[[~[8~]>>path:#_ftnref8]] Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.
965 +
966 +[[~[9~]>>path:#_ftnref9]] For the syntax of the VTL operators see the VTL Reference Manual
967 +
968 +
835 835  {{putFootnotes/}}