Wiki source code of 13 Structure Mapping

Version 4.3 by Helena on 2025/06/16 14:22

Show last authors
1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 == 13.1 Introduction ==
6
7 The purpose of [[SDMX>>doc:sdmx:Glossary.Statistical data and metadata exchange.WebHome]] structure mapping is to transform [[datasets>>doc:sdmx:Glossary.Data set.WebHome]] from one dimensionality to another. In practice, this means that the input and output [[datasets>>doc:sdmx:Glossary.Data set.WebHome]] conform to different Data Structure Definition.
8
9 Structure mapping does not alter the [[observation values>>doc:sdmx:Glossary.Observation value.WebHome]] and is not intended to perform any aggregations or calculations.
10
11 An input series (% style="color:#e74c3c" %)maps(%%) to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different [[Series Keys>>doc:sdmx:Glossary.Series key.WebHome]], but the same [[observation values>>doc:sdmx:Glossary.Observation value.WebHome]]; or
15 1. Zero output series where no source rule matches the input [[Component>>doc:sdmx:Glossary.Component.WebHome]] values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
21 * Transforming unidimensional [[datasets>>doc:sdmx:Glossary.Data set.WebHome]]{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
22 * Transforming internal [[datasets>>doc:sdmx:Glossary.Data set.WebHome]] with a complex structure to a simpler structure with fewer [[dimensions>>doc:sdmx:Glossary.Dimension.WebHome]] suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
30 |Country|Alpha-2 code|Alpha-3 code
31 |Afghanistan|AF|AFG
32 |Albania|AL|ALB
33 |Algeria|DZ|DZA
34 |American Samoa|AS|ASM
35 |Andorra|AD|AND
36 |etc…| |
37
38 Different source values can also map to the same target value, for example when deriving regions from country codes.
39
40 |Source Component: REF_AREA|Target Component: REGION
41 |FR|EUR
42 |DE|EUR
43 |IT|EUR
44 |ES|EUR
45 |BE|EUR
46
47 == 13.3 N-n structure maps ==
48
49 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
50
51 Example:
52
53 |Rule|Source|Target
54 |1|(((
55 If
56
57 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
58 )))|(((
59 Set
60
61 INDICATOR=A_N_L
62 )))
63 |2|(((
64 If
65
66 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
67 )))|(((
68 Set
69
70 INDICATOR=MON_SAX_12
71 )))
72
73 N-n rules can also set values for multiple source Components.
74
75 |Rule|Source|Target
76 |1|(((
77 If
78
79 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
80 )))|(((
81 Set
82
83 INDICATOR=A_N_L, STATUS=QXR15,
84
85 NOTE="Unadjusted".
86 )))
87 |2|(((
88 If
89
90 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
91 )))|(((
92 Set
93
94 INDICATOR=MON_SAX_12,
95
96 STATUS=MPM12,
97
98 NOTE="Seasonally Adjusted"
99 )))
100
101 == 13.4 Ambiguous mapping rules ==
102
103 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
104
105 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
106
107 |Source|Target|Output Series Key
108 |SERIES_CODE=XMAN_Z_21|(((
109 Dimensions
110
111 INDICATOR=XM
112 FREQ=A
113 ADJUSTMENT=N
114 Attributes
115 UNIT_MEASURE=_Z
116
117 COMP_ORG=21
118 )))|XM:A:N
119 |(((
120 SERIES_CODE=XMAN_Z_34
121
122
123 )))|(((
124 Dimensions
125
126 INDICATOR=XM
127
128 FREQ=A
129
130 ADJUSTMENT=N
131
132 Attributes
133
134 UNIT_MEASURE=_Z
135
136 COMP_ORG=34
137 )))|XM:A:N
138
139 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
140
141 == 13.5 Representation maps ==
142
143 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
144
145 The source and target of a Representation Map can reference any of the following:
146
147 1. Codelist
148 1. Free Text (restricted by type, e.g String, Integer, Boolean)
149 1. Valuelist
150
151 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
152
153 |CL_ISO_ALPHA2|CL_ISO_ALPHA3
154 |AF|AFG
155 |AL|ALB
156 |DZ|DZA
157 |AS|ASM
158 |AD|AND
159 |etc…|
160
161 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
162
163 |Text|CL_ISO_ALPHA2
164 |"Germany"|DE
165 |"France"|FR
166 |"United Kingdom"|GB
167 |"Great Britain"|GB
168 |"Ireland"|IE
169 |"Eire"|IE
170 |etc…|
171
172 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
173
174 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
175
176 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
177
178 |Value|Locale|Name
179 |$|en|United States Dollar
180 |%|En|Percentage
181 | |fr|Pourcentage
182
183 Other characteristics of Representation Maps:
184
185 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
186 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
187 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
188 *1. Regular expression and substring rules
189
190 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
191
192 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
193
194 //If starts with 'XU' map to 'Y'//
195
196 These rules are described using either regular expressions, or substrings for simpler use cases.
197
198 === 13.5.1 Regular expressions ===
199
200 Regular expression mapping rules are defined in the Representation Map.
201
202 Below is an example set of regular expression rules for a particular component.
203
204 |Regex|Description|Output
205 |A|Rule match if input = 'A'|OUT_A
206 |^[A-G]|Rule match if the input starts with letters A to G|OUT_B
207 |A~|B|Rule match if input is either 'A' or 'B'|OUT_C
208
209 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
210
211 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \**//n//**// //as an output value where **//n//** is the number of the capture group starting from 1. For example
212
213 |Regex|Target output|Example Input|Example Output
214 |(((
215 ([0-9]{4})[0-
216
217 9]([0-9]{1})
218 )))|\1-Q\2|200933|2009-Q3
219
220 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
221
222 The following example shows this:
223
224 |Priority|Regex|Description|Output
225 |1|A|Rule match if input = 'A'|OUT_A
226 |2|B|Rule match if input = 'B'|OUT_B
227 |3|[A-Z]|Any character A-Z|OUT_C
228
229 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
230
231 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
232
233 === 13. Substrings ===
234
235 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
236
237 For instance:
238
239 |Input String|Start|Length|Output
240 |ABC_DEF_XYZ|5|3|DEF
241 |XULADS|1|2|XU
242
243 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
244
245 |Start|Length|Source|Target
246 |1|2|XU|Y
247
248 == 13.6 Mapping non-SDMX time formats to SDMX formats ==
249
250 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
251
252 Two types of time input are defined:
253
254 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
255
256 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
257
258 |Frequency|Format|Example
259 |A|YYYY|2010
260 |D|YYYY-MM-DD|2010-01-01
261 |I|(((
262 YYYY-MM-DD-
263
264 Thh:mm:ss
265 )))|2010-01T20:22:00
266 |M|YYYY-MM|2010-01
267 |Q|YYYY-Qn|2010-Q1
268 |S|YYYY-Sn|2010-S1
269 |T|YYYY-Tn|2010-T1
270 |W|YYYY-Wn|YYYY-W53
271
272 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
273
274 There are two important points to note:
275
276 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
277 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
278 11.
279 111. Pattern based dates
280
281 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
282
283 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale{{footnote}} A list of commonly used locales can be found in the Java supported locales: https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html{{/footnote}}. An indicative list of examples is presented in the following table:
284
285 |English (en)|Australia (AU)|en-AU
286 |English (en)|Canada (CA)|en-CA
287 |English (en)|United Kingdom (GB)|en-GB
288 |English (en)|United States (US)|en-US
289 |Estonian (et)|Estonia (EE)|et-EE
290 |Finnish (fi)|Finland (FI)|fi-FI
291 |French (fr)|Belgium (BE)|fr-BE
292 |French (fr)|Canada (CA)|fr-CA
293 |French (fr)|France (FR)|fr-FR
294 |French (fr)|Luxembourg (LU)|fr-LU
295 |French (fr)|Switzerland (CH)|fr-CH
296 |German (de)|Austria (AT)|de-AT
297 |German (de)|Germany (DE)|de-DE
298 |German (de)|Luxembourg (LU)|de-LU
299 |German (de)|Switzerland (CH)|de-CH
300 |Greek (el)|Cyprus (CY)|el-CY[[(*)>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
301 |Greek (el)|Greece (GR)|el-GR
302 |Hebrew (iw)|Israel (IL)|iw-IL
303 |Hindi (hi)|India (IN)|hi-IN
304 |Hungarian (hu)|Hungary (HU)|hu-HU
305 |Icelandic (is)|Iceland (IS)|is-IS
306 |Indonesian (in)|Indonesia (ID)|in-ID[[(*)>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
307 |Irish (ga)|Ireland (IE)|ga-IE[[(*)>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
308 |Italian (it)|Italy (IT)|it-IT
309
310 Examples
311
312 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
313
314 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
315
316 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
317
318 22 Jul 1981 would be described as dd MMM YYYY
319
320 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
321
322 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
323
324 |Letter|Date or Time Component|Presentation|Examples
325 |G|Era designator|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|AD
326 |yy|Year short (upper case is Year of Week{{footnote}}yyyy represents the calendar year while YYYY represents the year of the week, which is only relevant for 53 week years{{/footnote}})|[[Year>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]]|96
327 |yyyy|Year Full (upper case is Year of Week)|Year|1996
328 |MM|Month number in year starting with 1|Month|07
329 |MMM|Month name short|Month|Jul
330 |MMMM|Month name full|Month|July
331 |ww|Week in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|27
332 |W|Week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
333 |DD|Day in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|189
334 |dd|Day in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|10
335 |F|Day of week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
336 |E|Day name in week|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|Tuesday; Tue
337 |U|Day number of week (1 = Monday, ..., 7 = Sunday)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|1
338 |HH|Hour in day (0-23)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
339 |kk|Hour in day (1-24)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|24
340 |KK|Hour in am/pm (0-11)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
341 |hh|Hour in am/pm (1-12)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
342 |mm|Minute in hour|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|30
343 |ss|Second in minute|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|55
344 |S|Millisecond|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|978
345 |n|(((
346 Number of periods, used after a SDMX
347
348 Frequency Identifier such as M, Q, D (month, quarter, day)
349 )))|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
350
351 The model is illustrated below:
352
353
354
355 **Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format?**
356
357
358
359 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
360
361 === 13.3.6 Numerical based datetime ===
362
363 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
364
365 * day
366 * second
367 * millisecond
368 * microsecond
369 * nanosecond
370
371 |Numerical datetime systems|Base|Period
372 |(((
373 Epoch Time (UNIX)
374
375 Milliseconds since 01 Jan 1970
376 )))|1970|millisecond
377 |(((
378 Windows System Time
379
380 Milliseconds since 01 Jan 1601
381 )))|1601|millisecond
382
383 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
384
385 The model is illustrated below:
386
387 [[image:1750072341491-790.jpeg]]
388
389 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
390
391 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
392
393 === Mapping more complex time inputs ===
394
395 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
396
397 == Using TIME_PERIOD in mapping rules ==
398
399 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
400
401 The main use case is setting the value of Observation Attributes in the target dataset.
402
403 |Rule|Source|Target
404 |1|(((
405 If
406
407 INDICATOR=XULADS; and TIME_PERIOD=2007.
408 )))|(((
409 Set
410
411 OBS_CONF=F
412 )))
413 |2|(((
414 If
415
416 INDICATOR=XULADS; and TIME_PERIOD=2008.
417 )))|Set OBS_CONF=F
418 |3|(((
419 If
420
421 INDICATOR=XULADS; and TIME_PERIOD=2009.
422 )))|(((
423 Set
424
425 OBS_CONF=F
426 )))
427 |4|(((
428 If
429
430 INDICATOR=XULADS; and TIME_PERIOD=2010.
431 )))|(((
432 Set
433
434 OBS_CONF=**C**
435 )))
436
437 In the example above, OBS_CONF is an Observation Attribute.
438
439 == 13. Time span mapping rules using validity periods ==
440
441 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
442
443 Instead, an optional validity period can be set for each mapping.
444
445 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
446
447 |Rule|Source|Target
448 |1|(((
449 If
450
451 INDICATOR=XULADS.
452
453
454 Validity Period start period=2007 end period=2009
455 )))|Set OBS_CONF=F
456 |2|(((
457 If
458
459 INDICATOR=XULADS.
460
461
462 Validity Period start period=2010
463 )))|(((
464 Set
465
466 OBS_CONF=F
467 )))
468
469 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
470
471 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
472
473 == 13. Mapping examples ==
474
475 === 13. Many to one mapping (N-1) ===
476
477 |Source|Map To
478 |(((
479 **FREQ**="A"
480
481 ADJUSTMENT="N"
482
483 **REF_AREA**="PL"
484
485 **COUNTERPART_AREA**="W0"
486
487 REF_SECTOR="S1"
488
489 COUNTERPART_SECTOR="S1"
490
491 ACCOUNTING_ENTRY="B"
492
493 STO="B5G"
494 )))|(((
495 FREQ="A"
496
497 REF_AREA="PL"
498
499 COUNTERPART_AREA="W0"
500 INDICATOR="IND_ABC"
501
502 )))
503
504 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
505
506 FREQ => FREQ
507
508 REF_AREA=> REF_AREA
509
510 COUNTERPART_AREA=> COUNTERPART _AREA
511
512 No Representation Mapping is required. The source value simply copies across unmodified.
513
514 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
515
516 N:S1:S1:B:B5G => IND_ABC
517
518 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
519
520 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
521
522 1.
523 11.
524 111. Mapping other data types to Code Id
525
526 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
527
528 The following representation mapping can be used to explicitly map each age to an output code.
529
530 |Source Input Free Text|Desired Output Code Id
531 |0|A
532 |1|A
533 |2|A
534 |3|B
535 |4|B
536
537 If this mapping takes advantage of regular expressions it can be expressed in two rules:
538
539
540 Regular Expression Desired Output
541
542 |[0-2]|A
543 |[3-4]|B
544
545 === 13. Observation Attributes for Time Period ===
546
547 This use case is where a specific observation for a specific time period has an attribute value.
548
549 |Input INDICATOR|Input TIME_PERIOD|Output OBS_CONF
550 |XULADS|2008|C
551 |XULADS|2009|C
552 |XULADS|2010|C
553
554 Or using a validity period on the Representation Mapping:
555
556 Input INDICATOR Valid From/ Valid To Output OBS_CONF
557
558 XULADS 2008/2010 C
559
560 === 13. Time mapping ===
561
562 This use case is to create a time period from an input that does not respect SDMX Time Formats.
563
564 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
565
566 |Source Value|Source Mapping|Target Frequency|Output
567 |18/07/1981|dd/MM/yyyy|A|1981
568
569 When the target frequency is based on another target Dimension value, in this example the value of the FREQ Dimension in the target DSD.
570
571 Source Value Source Mapping Target Frequency Output
572
573 Dimension
574
575 |18/07/1981 dd/MM/yyyy FREQ| |1981-07-18 (when FREQ=D)
576 | When the source is a numerical format| |
577 |Source Value Start Period Interval|(((
578 Target
579
580 FREQ
581 )))|Output
582 |1589808220 1970 millisecond|M|2020-05
583
584 When the source frequency is lower than the target frequency additional information 3568 can be provided for resolve to start of period, end of period, or mid period, as shown 3569 in the following example:
585
586 Source Value Source Mapping Target Frequency Output
587
588 Dimension
589
590 1981 yyyy D – End of Period 1981-12-31
591
592
593 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
594
595 Source Value Source Mapping Target Frequency Output
596
597 Dimension
598
599 ----
600
601 {{putFootnotes/}}